

Miniature and • General Bearings • Extra-Small Ball Bearings

CAT.NO.B2015E

CONTENTS

Bearing Technical Section

1.	Bearing Types and Features1.1 Types and Features1.2 Designation Structure
	1.3 Cages 6
2.	Bearing Life and Load Rating2.1Bearing Life62.2Calculation of Bearing Service Life72.3Dynamic Equivalent Load92.4Basic Static Load Rating and Static Equivalent Load10
3.	Bearing Tolerances 11
4.	 Rotation Speed Limit 4.1 Correction of the Rotation Speed Limit
5.	Bearing Fits 16
6.	Bearing Internal Clearance 18
7.	Preload of Bearings
	7.1 Objective of Preload
	7.2 Methods for Preloading 20 7.3 Preload Force 20

8.	Bea	ring Lubrication
	8.1 (Objective of Lubrication and Methods 21
	8.2 (Grease Lubrication21
	8.3 (Oil Lubrication 21
	8.4 (Grease Life of Shielded and Sealed Miniature
	á	and Extra-Small Ball Bearings21
9.	Bea	ring Torque 23
10.	Bea	ring Materials 24
11.	Han	dling of Bearings
	11.1	General Precautions for Handling 25
	11.2	Storage of Bearings 25
	11.3	Mounting Bearings 25
	11.4	Trial Run and Inspection26
	11.5	Bearing Dismounting 27
12.	Cera	amic Bearings
	12.1	Properties of Ceramics28
	12.2	Features of Ceramic Bearings 29
	12.3	Application Examples of Ceramic Bearings 30
	_	

Bearing Dimension Tables

Metric Series Deep Groove Ball Bearings

1.	Standard Series	36
2.	Narrow-width Series	40
3.	Standard Series with Flanges	42
4.	Standard Series with Resin Flange [FN Bearings]	46

Supplementary Tables

1. Bearing Number Correspondence Table 50
2. Shaft Tolerances 54
3. Housing Bore Tolerances 56
4. Numerical Values for Standard Tolerance Grades IT
5. Prefixes used with SI Units
6. SI Units and Conversion Factors 59
7. Steel Hardness Conversion 63
8. Viscosity Conversion 64

MINIATURE AND EXTRA-SMALL BALL BEARINGS

CAT.NO.B2015E

Value & Technology

New edition:

Koyo MINIATURE AND EXTRA-SMALL BALL BEARINGS CATALOG

Preface

Thank you for your valuable support of JTEKT products.

Recent industrial applications demand more sophistication in a variety of machines and equipment with the improvement of environment-protection policy.

Rotation parts for information processing, audio, and visual equipment that include such features as high tolerance and low torque are highly desired by users.

To meet such demands, we at JTEKT exploit state-of-the-art research facilities and leadingedge production methods to improve the performance and life of tolerance miniature and extrasmall ball bearings.

The information contained in this catalog is the result of our research activities. We believe that this catalog will aid users in the selection and utilization of miniature and extra-small ball bearings.

Through our efforts in research and technical development, and by obtaining inspiration from the marketplace, JTEKT can continually offer the best technologies, quality, and services.

We trust that you will be as satisfied with our latest products and services as you have been in the past.

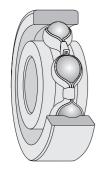
★The contents of this catalog are subject to change without prior notice. Every possible effort has been made to ensure that the data herein is correct; however, JTEKT cannot assume responsibility for any errors or omissions.

Reproduction of this catalog without written consent is strictly prohibited.

CONTENTS

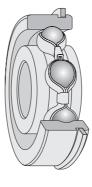
Bearing Technical Section

1.	Bearing Types and Features
	1.1 Types and Features2
	1.2 Designation Structure 4
	1.3 Cages6
2.	Bearing Life and Load Rating 2.1 Bearing Life 6
	2.2 Calculation of Bearing Service Life
	2.3 Dynamic Equivalent Load9
	2.4 Basic Static Load Rating and Static Equivalent Load10
3.	Bearing Tolerances 11
	Rotation Speed Limit
	4.1 Correction of the Rotation Speed Limit
	4.2 Rotation Speed Limit for Sealed Miniature and
	Extra-Small Ball Bearings15
5.	Bearing Fits 16
6.	Bearing Internal Clearance 18
7.	Preload of Bearings
	7.1 Objective of Preload20
	7.2 Methods for Preloading20
	7.3 Preload Force20
8.	Bearing Lubrication
	8.1 Objective of Lubrication and Methods21
	8.2 Grease Lubrication21
	8.3 Oil Lubrication 21
	8.4 Grease Life of Shielded and Sealed Miniature and
_	Extra-Small Ball Bearings
	Bearing Torque 23
10.	Bearing Materials 24
11.	Handling of Bearings
	11.1 General Precautions for Handling
	11.2 Storage of Bearings
	11.3 Mounting Bearings 25
	11.4 Trial Run and Inspection 26 11.5 Bearing Dismounting 27
10	
12.	Ceramic Bearings 12.1 Properties of Ceramics
	12.1 Froperties of Ceramics
	12.3 Application Examples of Ceramic Bearings
13	Products Information

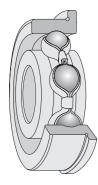

1. Bearing Types and Features

1. Bearing Types and Features

Miniature and extra-small ball bearings include those with outer ring flanges, thin section types, and narrowwidth types, as well as standard ones. The above are also

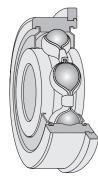

1.1 Types and Features

1) Open types


This type of bearing can carry a radial load and axial load in both directions simultaneously. Featuring low frictional torque, it is suitable for applications where high rotation speed or low noise and vibration are required. categorized as open, shielded, and sealed types. The miniature and extra-small ball bearings in this catalogue are deep groove ball bearings.

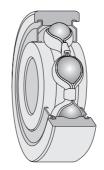
4) Locating snap ring types

With this type of bearing, mounting in a housing is simple, as its positioning in the axial direction is carried out using a locating snap ring.


2) Outer ring flange types

This type of miniature and extrasmall ball bearings has a flange on one end of the outside surface.

Since mounting is carried out using the side of the housing as reference, this type of bearing simplifies installation by easily positioning itself in the axial direction.


3) Outer ring resin flange types (FN bearings)

In this type of bearing a resin flange is injection molded around the outside surface, as an alternative to the solid outer ring flange.

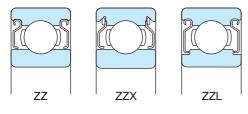
This newly developed item is approximately 10% lighter than a conventional miniature and extra-small ball bearings with an outer ring flange.

5) Shielded and sealed types

These types of miniature and extrasmall ball bearings are sealed by shields or rubber seals to prevent leakage of lubricating grease or entry of foreign matter.

Since the appropriate quantity of a high quality lubricating grease is factory sealed, the sealed miniature and extrasmall ball bearings allows simplification of sealing devices around the bearing and facilitates easy handling.

Shielded and sealed miniature and extra-small ball bearings with outer ring flange are also available.

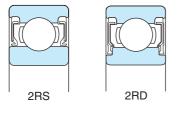


Types, structures and features of shielded and sealed miniature and extra-small ball bearings

(1) Shielded types ZZ(Z), ZZX(ZX), ZZL(ZL)

In this type of bearing, a press-worked shield is utilized. These bearings are classified as Z and ZX types according to the manner in which the shield is fixed to the outer ring. A ZL type, in which the inner ring is provided with a groove, is also available.

A carbon steel or stainless steel plate is used for the shield.


ZZ, ZZX, ZZL...dual-shielded type Z, ZX, ZL...single-shielded type

(2) Contact sealed types 2RS(RS), 2RD(RD)

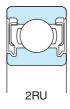
A contact rubber seal is included on this type of sealed deep groove ball bearing.

This type of bearing offers excellent grease sealability and dust prevention as its structure is such that the seal lip is in contact with either the shoulder of the inner ring (outside surface of inner ring) or with the shoulder step.

These bearings come in standard RS type and low frictional torque RD type.

2RS, 2RD...dual-sealed type RS, RD...single-sealed type

<Features of the RD seal>


The RD seal has a labyrinth structure in the shape of a letter Z formed by the seal lip and inner ring seal groove. The torque requirement of this type of bearing is as low as that of the non-contact type since the lip is extremely light contact with the seal groove of the inner ring, yet this newly developed item offers excellent grease sealability and dust prevention.

(3) Non-contact sealed types 2RU(RU)

This type of sealed deep groove ball bearing utilizes a rubber or resin non-contact seal.

Since the labyrinth is formed between the seal lip and the seal groove step in the inner ring, it is superior in grease sealability and dust prevention.

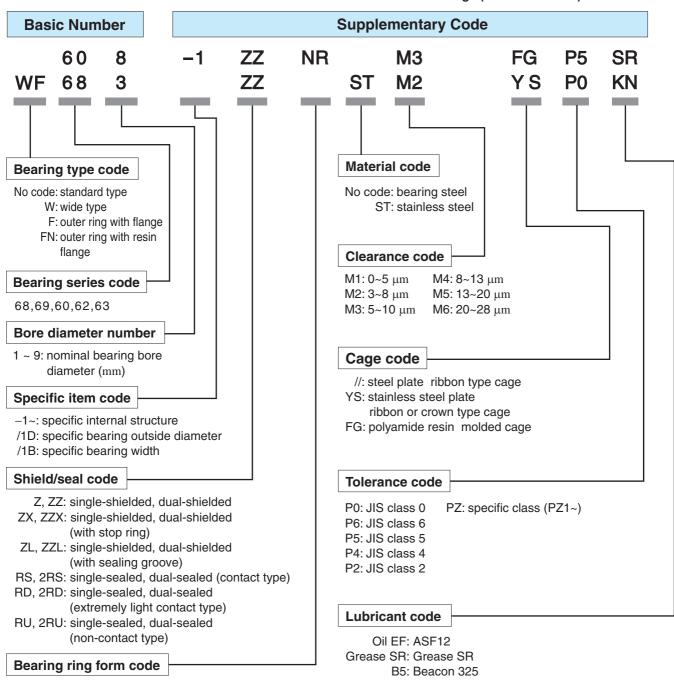
Being a non-contact type, it is suitable for high-speed applications with low frictional torque requirements.

2RU---dual-sealed type RU...single-sealed type

Reference Dimensional ranges of miniature and extra-small ball bearings

Table 1.1 shows dimensional ranges of miniature and extra-small ball bearings.

	Unit : mm					
Classification	Miniature Ball Bearings	Extra-Small Ball Bearings				
Metric series	Nominal bearing outside diameter $D < 9$ Nominal bearing bore diameter —	Nominal bearing outside diameter $D \ge 9$ Nominal bearing bore diameter $d < 10$				


Table 1.1 Dimensional Ranges of Miniature and Extra-Small Ball Bearings

[Remark] For bearings with a larger diameter than miniature and extra-small ball bearings, please refer to the comprehensive JTEKT bearing catalog CAT. NO. B2001E-1.

1.2 Designation Structure

The designation of a bearing indicates the specifications of the bearing, such as bearing type, boundary dimensions, dimension accuracy, running accuracy, and internal clearance. It consists of a basic number and a supplementary code. Designation of standard bearings conforming to JIS B 1512 (Boundary Dimensions for Rolling Bearings) is specified by JIS B 1513.

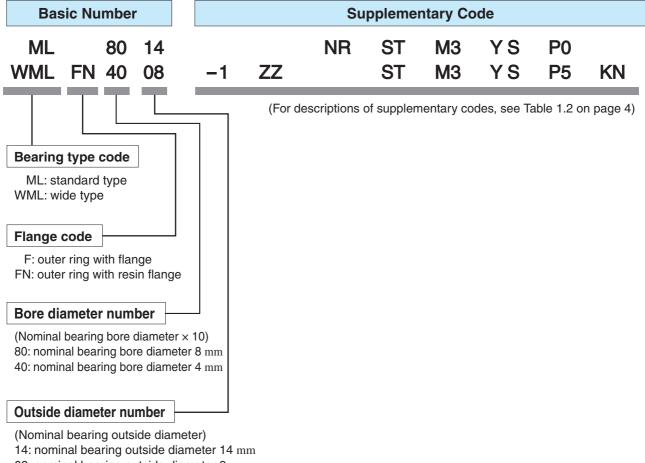

In addition to JIS designation, JTEKT uses supplementary codes, for ease of understanding of bearing specifications. The designation structure is shown in Tables 1.2 to 1.3.

Table 1.2 Metric Series Miniature and Extra-Small Ball Bearings (Standard Series)

N: with snap ring groove NR: with snap ring groove and snap ring B5: Beacon 325 4M: SH44M (For other greases, see Tables 8.2 and 8.3 on page 22)

Table 1.3 Metric Series Miniature and Extra-Small Ball Bearings (Specific Dimension Series)

08: nominal bearing outside diameter 8 mm

1.3 Cages

In general, a ribbon type or crown type cage made of steel is used in miniature and extra-small ball bearings. The ribbon type cage is used in relatively large bearings, while the crown type is used in smaller ones.

Molded polyamide resin cages are becoming increasingly popular, as they are advantageous in terms of frictional torque, grease life, and noise.

Table 1.4 shows types, codes, and names of cages used in miniature and extra-small ball bearings.

Cage Type	Codes	Names
	// YS	Steel Ribbon type cage Stainless steel Ribbon type cage
	YS	Stainless steel Crown type cage
Prover of	FG	Polyamide resin Molded cage

Table 1.4 Cage Types, Codes, and Names

2. Bearing Life and Load Rating

2.1 Bearing Life

When a bearing rotates under a load, the raceway surfaces of the inner and outer rings and the rolling contact surfaces of the rolling elements are constantly subjected to alternating load. Even under proper operating conditions this results in scale-like damage (known as peeling or flaking) on the surfaces of the race-way or surfaces of the rolling elements due to material fatigue.

The total number of rotations reached prior to this damage is known as "the (fatigue) life" of a bearing.

Substantial variations in (fatigue) life occur even if bearings of the same structure, dimensions, materials, machining method, etc. are operated under identical conditions. This is due to the discreteness in fatigue life, an intrinsic phenomenon to the material, which shall be studied in terms of statistics.

The total number of rotations at which 90% of the same bearings operated individually under the same conditions should be free of damage caused by rolling fatigue (in other words, bearing life of 90% reliability), is referred to as "the basic rating life."

If bearings are operated at a constant rate, the basic rating life is expressed in total running hours.

In miniature and extra-small ball bearings, it is rare that fatigue life becomes an issue of concern. Factors affecting the service life of such bearings are the decline of bearing performance and deterioration of lubricant, which appear before flaking occurs.

Specifically, bearings used for audio and office automation equipment and aircraft instruments are required to offer a high level of noise, vibration, and frictional torque performance. Practical bearing life ends when a bearing becomes incapable of meeting its performance requirements.

2.2 Calculation of Bearing Service Life

2.2.1 Basic Dynamic Load Rating

The strength of a bearing against rolling fatigue (C) – that is, the basic dynamic load rating representing the load-bearing capacity – is the net constant radial load (in the case of a radial bearing) that a bearing, with either the inner/outer ring stationary and the other rotating, can endure for a rating life of 1 million rotations.

The basic dynamic load rating of a radial bearing is also known as "the basic dynamic radial load rating (C_r)." Its values are given in the bearing dimension tables.

2.2.2 Basic Rating Life

The relationship among the basic rating life, the basic dynamic load rating, and the dynamic equivalent load is expressed by Equation (2.1).

If a bearing is to be operated at a constant rotation speed, its life is conveniently expressed in hours as shown in Equation (2.2).

Total number of rotations	$L_{10} = \left(\frac{C}{P}\right)^p \dots \qquad (2. 1)$
Hours	$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^p \dots \dots \dots (2.2)$

where,

P: dynamic equivalent load, N (See 2.3 on Page 9)

C: basic dynamic load rating, N

p : exponent, for ball bearings p = 3

(for roller bearings
$$\dots p = 10/3$$
)

n: rotation speed, min⁻¹

When a bearing is operated under a dynamic equivalent load P and rotation speed n, the basic dynamic load rating C of the bearing, which is adequate for meeting the design life, is given by Equation (2.3). Thus, the dimensions of the bearing are determined by selecting a bearing from the bearing dimension tables, which meets the required dynamic load rating C_r .

$$C = P \left(L_{10h} \times \frac{60n}{10^6} \right)^{1/p}$$
 (2.3)

Reference

The formula below is derived from Equation (2.2) by applying a life coefficient (f_n) and speed coefficient (f_n).

$L_{10h} = 500 f_h^3$ (2.4)
Life coefficient : $f_h = f_n \frac{C}{P}$ (2.5)
Speed coefficient : $f_n = \left(\frac{10^6}{500 \times 60n}\right)^{1/3}$
$= (0.03n)^{-1/3}$ (2.6)

Values of f_n , f_h , and L_{10h} are determined approximately by nomograms as shown in Fig. 2.1.

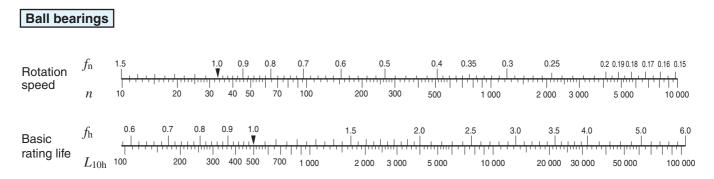


Fig. 2.1 Rotation Speed (*n*) and its Coefficients (f_n), and service Life Coefficient (f_h) and basic rating Life (L_{10h})

 L_{10} : basic rating life, 10⁶ rotations

 L_{10h} : basic rating life, h

2.2.3 Temperature Corrections for Basic Dynamic Load Ratings and Dimension Stabilizing Treatment for Bearings

When bearings are operated at high temperatures, their material structure changes, and thus their hardness decreases as well as the basic dynamic load rating lowers by use at normal temperature.

Once the material structure has changed, it does not recover even if the temperature returns to normal.

Accordingly, the basic dynamic load ratings indicated in the bearing dimension tables must be corrected by multiplying by a temperature coefficient shown in Table 2.1 when used at high temperature.

Table 2.1 Temperature Coefficient Values

Bearing Temperature, °C	125	150	175	200	250
Temperature Coefficient	1	1	0.95	0.9	0.75

When a bearing which has only undergone ordinary heat treatment is operated at 120 °C or higher for an extended period of time, a substantial dimensional change occurs. Thus it needs dimension stabilizing treatment.

The codes and operating temperature ranges for dimension stabilizing treatment are shown in Table 2.2.

The hardness of such bearings, however, is low, so in some cases their basic dynamic load ratings may decrease.

Table 2.2	Bearing	Dimension	Stabilizing	Treatment
-----------	---------	-----------	-------------	-----------

Dimension Stabilizing	Operating Temperature
Treatment Code	Range
SO	> 100 °C, ≦ 150 °C
S1	> 150 °C, ≦ 200 °C
S2	>200 °C,≦250 °C

2.2.4 Corrected Rating Life

The basic rating life (L_{10}) expressed by Equation (2.1) is the (fatigue) life with 90% reliability. The reliability should be higher than 90% for some applications. Bearing life may be extended by adopting specific materials. In addition, operating conditions such as lubrication may affect bearing life.

The basic rating life taking these conditions into consideration is known as the corrected rating life, which is determined by Equation (2.7).

 $L_{\rm na} = a_1 a_2 a_3 L_{10} \qquad (2.7)$

where,

$L_{\rm na}$: corrected rating life, 10 ⁶ rotations
Bearing life at 100– $n\%$ reliability-namely, breakage
probability n%-considering bearing characteristics
and operating conditions

- L_{10} : basic rating life, 10⁶ rotations (90% reliability)
- a1: reliability coefficient See (1)
- a2: bearing characteristic coefficient See (2)
- a_3 : operating condition coefficient See (3)

[Note] When selecting bearing using an L_{na} with a reliability exceeding 90%, special consideration should be given to the strength of the shaft and housing.

(1) Reliability Coefficient, a_1

Table 2.3 shows a_1 values used to determine the corrected rating life at reliabilities of 90% or higher (10% or less for breakage probability).

Table 2.3 Reliability Coefficient, a1

Reliability, %	$L_{\rm na}$	a_1
90	L_{10a}	1
95	L 5a	0.62
96	$L_{ m 4a}$	0.53
97	L _{3a}	0.44
98	L_{2a}	0.33
99	$L_{ m 1a}$	0.21

(2) Bearing characteristic coefficient, a₂

The bearing characteristic variables pertaining to service life may changes because of different bearing material (steel type and quality), manufacturing process, and design. a_2 is used for correction in such cases.

JTEKT applies high-quality vacuum degassed bearing steels as standard bearing material. The results of our tests show it to have substantial extended bearing life. The basic load ratings indicated in the bearing dimension table are based on bearings of this material. In such cases, assume $a_2 = 1$.

Additionally, for bearings using a specific material aimed at extending fatigue life, the value of a_2 can be greater than 1.

(3) Operating conditions coefficient, a_3

 a_3 is used for correction where a bearing operating condition has a direct influence on bearing life (especially, the adequacy of lubrication).

When lubrication is normal, $a_3=1$. a_3 can be greater than 1 if the lubrication is especially good.

 $a_3 < 1$ under the conditions below.

- Lubricant during operation has low kinematic viscosity Ball bearings $\dots \leq 13 \text{ mm}^2/\text{s}$ (Roller bearings $\dots \leq 20 \text{ mm}^2/\text{s}$)
- Use at a very low rotation speed, where the product of pitch diameter of rolling element and rotation speed ≤ 10000
- · Foreign matter enters lubricant
- Inner and outer rings incline considerably

[Note]

If the hardness of a bearing decreases during operation at high temperatures, a correction to the basic dynamic load rating is required (see Table 2.1 on Page 8) [Remark]

 $a_2 \times a_3$ may not be greater than 1 when lubrication is inadequate, even if $a_2 > 1$ owing to the use of a specific material.

Consequently, in general, $a_2 \leq 1$ if $a_3 < 1$.

Since it is not easy to view a_2 and a_3 as independent coefficients, they are treated in some cases as a single coefficient, a23.

2.3 Dynamic Equivalent Load

Bearings are often subjected to a resultant load consisting of radial and axial loads, with their various load conditions and magnitudes being variable.

Thus it is impossible to compare the actual load of a bearing with the basic dynamic load rating.

Then, a method in which the actual load is conversed to a virtual load of a constant magnitude and direction applied to the bearing center is applied. Under such virtual load, the bearing life is equal to that resultant from an actual load and rotation speed. This calculated virtual load is called the dynamic equivalent load (P).

The dynamic equivalent load of a radial bearing receiving a resultant load constant in magnitude and direction is obtained by Equation (2.8).

$P_{\rm r} = XF_{\rm r} + YF_{\rm a}$ (2.8)
vhere,
$P_{\rm r}$: dynamic equivalent radial load, N
$F_{\rm r}$: radial load, N
F _a : axial load, N
$C_{0\mathrm{r}}$: basic static radial load rating, N
······ (See 2.4 on Page 10)
e : constant

- X : radial load coefficient (See Table 2.4)
- Y: axial load coefficient (See Table 2.4)

$\frac{if_0F_a}{C_{0r}}$	е	$rac{F_{ m a}}{F_{ m r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
Cor		X	Y	X	Y		
0.172	0.19				2.30		
0.345	0.22				1.99		
0.689	0.26				1.71		
1.03	0.28				1.55		
1.38	0.30	1	0	0.56	1.45		
2.07	0.34				1.31		
3.45	0.38				1.15		
5.17	0.42				1.04		
6.89	0.44				1.00		

Table 2.4 Radial and Axial Load Coefficients of Miniature and Extra-Small Ball Bearings

[Notes] 1) Coefficient f_0 is shown in the bearing dimension table.

> 2) *i* means the number of rows of rolling elements in a bearing.

2.4 Basic Static Load Rating and Static Equivalent Load

2.4.1 Basic Static Load Rating

Under an excessive static load or with an impact load at very low rotation speed, bearings can experience local permanent deformation of the contact surfaces between the rolling elements and raceways. The magnitude of this permanent deformation increases as the load becomes greater. This will eventually impair the bearings ability to operate smoothly.

The basic static load rating (C_0) refers to the static load corresponding to the following calculated contact stress, which is working at the center of contact between the rolling element and raceway where the maximum load is applied.

- Deep groove ball bearings 4,200 MPa (including miniature and extra-small ball bearings)
- Self-aligning ball bearings 4,600 MPa
- Roller bearings 4,000 MPa

The total permanent deformation of the rolling element and raceway occurring under such contact stress as indicated above is approximately 0.0001 times the diameter of the rolling element.

The static load rating of radial bearings is known as the basic static radial load rating (C_{0r}). Its values are shown in the bearing dimension tables.

2.4.2 Static Equivalent Load

The static equivalent load (P_0) refers to a calculated virtual load. The magnitude of this load is determined through conversion, such that the load would produce a contact stress equal to that produced under actual loading conditions, occurring at the center of contact between the rolling element and raceway under the virtual load while the bearing is at rest or rotating at a very low rate.

For radial bearings, the radial load working at the bearing center is employed, which is referred to as the static equivalent radial load (P_{0r}).

The static equivalent load is obtained by Equations (2.9) and (2.10).

[Radial bearing]The larger of the values determined by the following two equations is adopted.

$P_{0\rm r} = X_0 F_{\rm r} + Y_0 F_{\rm a}$	
$P_{0r} = F_r$	

where,

- P_{0r} : static equivalent radial load, N F_r : radial load, N
- $F_{\rm a}$: axial load, N

V : otatic radial last f

 X_0 : static radial load factor (0.6) Y_0 : static axial load factor (0.5)

2.4.3 Safety Coefficient

The permissible static equivalent load is determined by the basic static load rating of the bearing. The operating limits of a bearing determined by the permanent deformation (local dent) described above depends on the bearing's performance requirements and operating conditions.

To estimate the degree of safety ensured for a basic static load rating, a safety coefficient is determined through experience.

$f_{\rm s} = \frac{C_0}{P_0}$	$f_{\rm s} = \frac{C_0}{P_0} \cdots$	
-------------------------------	---------------------------------------	--

where,

- $f_{\rm s}$: safety coefficient (See Table 2.5)
- C_0 : basic static load rating, N
- P₀: static equivalent load, N

Table 2.5 Values of Safety Coefficient *f*_s

fs (Min.) Ball Bearing
2
1
1.5

Please contact JTEKT separately according to the applications.

3. Bearing Tolerances

The main factor to consider when selecting the bearing tolerances is application. Table 3.1 shows standards used to select the tolerances of miniature and extra-small ball bearings. Use this table as a reference when determining the required bearing tolerances.

The tolerance classes of miniature and extra-small ball bearings are specified in JIS B 1514 (Tolerances for Rolling Bearings) (JIS is based on ISO standards).

The tolerance classes for these bearings are as follows:

· Metric series miniature and extra-small ball bearings JIS Classes 0, 6, 5, 4, and 2

Table 3.2 shows the limits for chamfer dimensions and Tables 3.3 to 3.4 show bearing tolerances of miniature and extra-small ball bearings.

(Reference) Standards and Organizations Related to Bearings

JIS: Japanese Industrial Standards

ISO: International Organization for Standardization

ANSI: American National Standards Institute, Inc.

Table 3.1	Tolerance Classes Selection Standard for
	Miniature and Extra-Small Ball Bearings

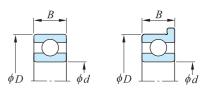
Application	Tolerance Class
Printers	
Copying machines	
Pinch rollers	
Stepping motors	
Electric power tools	Classes 0 and 6
ABS motors	
Electric fans	
Entertainment equipment	
Car Motors	
Small motors	
Axial flow fans	
Tape guide rolls	
Rotary encoders	Classes 5 and 4
Servo motors	
Cleaners	
Dental hand piece	
Precision motors	Classes 4 and 2
Polygon mirror scanners	0103565 4 0110 2

Table 3.2 Permissible Values for Chamfer Dimensions of Radial Bearing (JIS B 1514)

			Unit : mm	
Inner or outer ring		Radial Direction	Axial Direction	
side face	r_{\min} or $r_{1\min}$	r_{\max} or $r_{1\max}$		
	0.05	0.1	0.2	
<i>r</i> min Or <i>r</i> 1min	0.08	0.16	0.3	
direction	0.1	0.2	0.4	
Bore or outside	0.15	0.3	0.6	
surface	0.2	0.5	0.8	
Axial direction	0.3	0.6	1	
,	0.6	1	2	
$ \begin{pmatrix} \textcircled{(A)} : r_{\min} \text{ or } r_{1\min} \\ \textcircled{(B)} : r_{\max} \text{ or } r_{1\max} \end{pmatrix} $				

- [Remarks] 1. Value of r_{max} or r_{Imax} in the axial direction of bearings with nominal width of 2 mm or less shall be the same as the value in radial direction.
 - 2. There shall be no specification for the accuracy of the shape of the chamfer surface, but its outline in the axial plane shall not be situated outside of the imaginary circle arc with a radius of r_{\min} or r_{\min} which contacts the inner ring side face and bore, or the outer ring side face and outside surface.

(1) Inner ring (bore diameter)										Unit : μm
		al bore neter	Single plane mean bore diameter		Single bore diameter deviation		Single radial plane bore diameter variation V_{dsp}			Mean bore diameter variation
Class		d	devi	deviation				Diameter series		
	(n	nm)	Δ	dmp		l _{ds}	7, 8, 9 0, 1 2, 3, 4		V_{dmp}	
	over	up to	upper	lower	upper	lower	max.	max.	max.	max.
	-	0.6								
Class 0	0.6	2.5	0	-8	-	_	10	8	6	6
	2.5	10								
	-	0.6								
Class 6	0.6	2.5	0	_7	_	_	9	7	5	5
	2.5	10								
	-	0.6								
Class 5	0.6	2.5	0	-5	_	_	5	5		3
	2.5	10								
	-	0.6								
Class 4	0.6	2.5	0	-4	0	-4 ¹⁾	4	3		2
	2.5	10								
	-	0.6								
Class 2	0.6	2.5	0	-2.5	0	-2.5	-	2.	5	1.5
	2.5	10								


Table 3.3 (1) Tolerances for Metric Series Miniature and Extra-Small Ball Bearings (Inner Rings)

(2) Inner ring (running accuracy and width)

Unit : µm Nominal bore Radial runout Perpendicularity Axial runout Inner ring Single inner ring width deviation of assembled of inner ring face of assembled diameter width Δ_{Bs} bearing with respect to bearing inner variation Class Bearing for paired or d inner ring the bore ring Single row bearing stacked mounting²⁾ (mm) S_{ia} K_{ia} $S_{\rm d}$ V_{Bs} up to lower over max. max. max. upper upper lower max. - 40 0.6 0 12 _ _ Class 0 - 40 0.6 2.5 10 0 12 _ -120 2.5 10 0 0 -250 15 - 40 0.6 5 0 12 _ _ _ 2.5 Class 6 0.6 5 0 - 40 12 _ _ 2.5 6 0 0 15 10 -120-250 0.6 Class 5 0.6 4 7 7 0 0 -250 5 2.5 - 40 2.5 10 0.6 0.6 3 3 0 Class 4 2.5 2.5 0 - 40 -250 2.5 2.5 10 0.6 Class 2 0.6 2.5 1.5 1.5 1.5 0 - 40 0 -250 1.5 2.5 10

[Notes] 1) Applicable to bearings of diameter series 0, 1, 2, 3, and 4

- 2) Applicable to individual bearing rings fabricated for paired or stacked mounting
- [Remarks] 1. The upper tolerances for the bore diameters of cylindrical bore bearings specified in this table applies to the area from the bearings ring side face through 1.2 times the maximum permissible chamfer dimension $r_{\rm max}$
 - 2. According to revised ANSI / ABMA std 20, ABEC 1, 3, 5, 7, and 9 correspond to Classes 0, 6, 5, 4, and 2, respectively

d : nominal bore diameter

D : nominal outside diameter

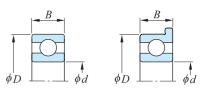
B: nominal assembled bearing width

(1) Outer ring (outside diameter)										Unit : μm	
	Nominal	outside	Single pla	ane mean	Single outside Single radial plane outside diameter variation, V _{Dsi}		er variation, $V_{D_{sp}}^{2)}$	Mean outside			
	diam	neter	outside diameter		diameter		0	Open type	e	Sealed type	diameter
Class	1	D		deviation		deviation		meter se	ries	Diameter series	variation
	(m	m)	Δi	Omp	Δ_{i}	1) Ds	7, 8, 9 0, 1 2, 3, 4		0, 1, 2, 3, 4	$V_{Dmp}^{2)}$	
	over	up to	upper	lower	upper	lower	max.	max.	max.	max.	max.
	_	2.5	0	-8			10	8	6	10 ³⁾	6
Class 0	2.5	18	0	-8	-	-	10	8	6	10 ³⁾	6
	18	30	0	-9			12	9	7	12 ³⁾	7
	-	2.5	0	-7			9	7	5	9	5
Class 6	2.5	18	0	-7	_	_	9	7	5	9	5
	18	30	0	-8			10	8	6	10	6
	-	2.5	0	-5			5	4			
Class 5	2.5	18	0	-5	_	-	5	4		_	3
	18	30	0	-6			6	5			
	-	2.5	0	-4	0	-4	4	3			2
Class 4	2.5	18	0	-4	0	-4	4	3 4		-	2
	18	30	0	-5	0	-5	5				2.5
	-	2.5	0	-2.5	0	-2.5		2.5			1.5
Class 2	2.5	18	0	-2.5	0	-2.5	-	2	.5	-	1.5
	18	30	0	_4	0	_4		4			2

Table 3.3 (2) Tolerances for Metric Series Miniature and Extra-Small Ball Bearings (Outer Rings) (1) Outer ring (outside diameter)

(2) Outer ring (running accuracy and width) Unit : μm								Unit : μm				
Class	Nominal outside diameter		diameter		diameter		Radial runout of assembled bearing outer ring	Perpendicularity of outer ring outside surface with respect to the face		Single or width de	uter ring eviation	Outer ring width variation
	(m	im)	$K_{ m ea}$	$S_{ m D}{}^{4)}$	$S_{\rm ea}^{4)}$	Δ	Cs	$V_{C_{\rm S}}$				
	over	up to	max.	max.	max.	upper	lower	max.				
Class 0	_ 2.5 18	2.5 18 30	10 15 15	_	_			tolerance for		Refer to the tolerance for		
Class 6	_ 2.5 18	2.5 18 30	8 8 9	_	_	Refer to	the	V_{Bs} , with <i>d</i> being that of the same bearing				
Class 5	_ 2.5 18	2.5 18 30	5 5 6	8	8	tolerance Δ_{Bs} , with that of th	d being	5				
Class 4	_ 2.5 18	2.5 18 30	3 3 4	4	5	bearing		2.5				
Class 2	_ 2.5 18	2.5 18 30	1.5 1.5 2.5	1.5	1.5 1.5 2.5			1.5				

[Notes] 1) Applicable to bearings of diameter series 0, 1, 2, 3, and 4


2) Applicable where no locating snap ring is fitted

3) Applicable to bearings of diameter series 2, 3, and 4

4) Not applicable to flanged bearings

[Remarks] 1. The upper tolerances for the bore diameters of cylindrical bore bearings specified in this table applies to the area from the bearings ring side face through 1.2 times the maximum permissible chamfer dimension r_{max}

> 2. According to revised ANSI / ABMA std 20, ABEC 1, 3, 5, 7, and 9 correspond to Classes 0, 6, 5, 4, and 2, respectively

d : nominal bore diameter

D : nominal outside diameter

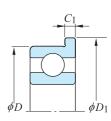

B : nominal assembled bearing width

Table 3.4 Tolerances for Flanges of Flanged Miniature and Extra-Small Ball Bearings

(1) Tolerance for flange outside diameter

					Unit : µm		
Nomina	I flange	Mountin	g flange	Non-moun	ting flange		
	diameter mm)	Single flange outside diameter deviation $ extsf{D}_{D1s}$					
over	up to	upper	lower	upper	lower		
_	6	0	-36	+220	-36		
6	10	0	-36	+220	-36		
10	18	0	-43	+270	-43		
18	30	0	-52	+330	-52		

[Remark] For the tolerance of miniature and extra-small ball bearings with resin flanges (FN bearings), see the bearing dimension table.

D: nominal bearing outside diameter D_1 : nominal flange outside diameter C_1 : nominal flange width

				<u>_</u>	······································		Unit : μm
Class	dian	l outside neter D m)	Single flange width deviation ⊿cis		Flange width variation V _{C1s}	Variation of outside surface generatrix inclination with flange back face $S_{\rm D1}$	Flange back face runout with raceway $S_{\rm cal}$
	over	up to	upper	lower	max.	max.	max.
	_	2.5					
Class 0	2.5	6					
Class 0	6	18			Refer to the	_	_
	18	30			tolerance for V_{Bs} ,		
	_	2.5			with d being that of		
Class 6	2.5	6			the same bearing		
Class 0	6	18				_	_
	18	30					
	_	2.5	Refer to th	le			
Class 5	2.5	6	tolerance			8	11
01833 5	6	18	with d beir			0	
	18	30	the same	bearing			
	-	2.5					
Class 4	2.5	6			2.5	4	7
Class 4	6	18			2.0	4	/
	18	30					
	_	2.5					3
Class 2	2.5	6			1.5	1.5	3
01235 2	6	18			1.5	1.5	4
	18	30					4

(2) Tolerances and variation for flange width, and running accuracy related to the flange

Unit : μm

[Remark] Tolerances specified in this table are not applicable to miniature and extra-small ball bearings with resin flanges (FN bearings).

Miniature and Extra-Small Ball Bearings

4. Rotation Speed Limit

The rotation speed of a bearing is restricted chiefly by temperature increases caused by frictional heat generated in the bearing. When the speed limit is reached, it becomes impossible to continue operation due to seizure and the like.

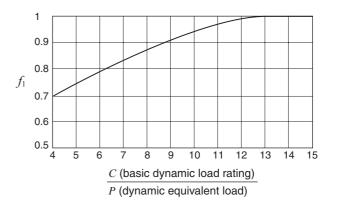
The limit on rotation speed of a bearing represents the maximum value at which the bearing can continue operation without generating seizure-causing heat.

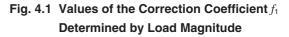
Accordingly, the rotation speed limit differs with each bearing type, dimensions, and accuracy, as well as with lubrication methods, quality and quantity of lubricant, cage material and type, loading conditions, etc.

The rotation speed limit for grease lubrication or oil (oil bath) lubrication of each bearing is given in the dimension table. These values are applicable in cases where a bearing of a standard design is operated under normal loading conditions ($C/P \ge 13$, $F_a/F_r \le$ approx. 0.25).

C: basic dynamic load rating	$F_{\rm r}$: radial load
<i>P</i> : dynamic equivalent load	$F_{\rm a}$: axial load

The classes and brands of some lubricants may not be suitable for high-speed operation even if they are excellent in other features. Consult JTEKT if the rotation speed of a bearing exceeds 80% of the catalog value.


4.1 Correction of the Rotation Speed Limit


Under some loading conditions, the rotation speed limit needs to be corrected by Equation (4.1). Such conditions include cases where C/P < 13 (namely, the dynamic equivalent load *P* is equal to or greater than approximately 8% of the basic dynamic load rating *C*), and in combined loading applications where the axial load exceeds 25% of the radial load.

 $n_{\rm a} = f_1 \cdot f_2 \cdot n$ (4. 1)

- $n_{\rm a}$: corrected rotation speed limit, min⁻¹
- f_1 : correction coefficient determined from the load magnitude (See Fig. 4.1)
- *f*₂ : correction coefficient determined from combined load (See Fig. 4.2)
- *n* : rotation speed limit under normal load condition, min^{-1} (listed in the bearing dimension table)
- C: basic dynamic load rating, N
- P : dynamic equivalent load, N
- Fr: radial load, N
- $F_{\rm a}$: axial load, N

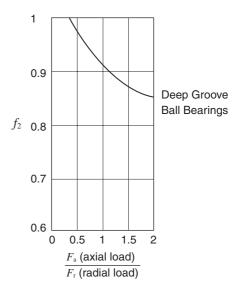


Fig. 4.2 Values of the Correction Coefficient f_2 Determined by Combined Load

4.2 Rotation Speed Limit for Sealed Miniature and Extra-Small Ball Bearings

The rotation speed limit for a miniature and extra-small ball bearing with contact seals is limited by the rubbing speed of the portion in contact with the seal. This allowable rubbing speed varies according to the rubber material of the seal. In JTEKT's miniature and extra-small ball bearing with standard type contact seals (nitrile rubber), 15 m/s is used.

The rotation speed limit for individual deep groove ball bearings with seals is given in the relevant bearing dimension table. 5. Bearing Fits

5. Bearing Fits

In general, light interference fits or slight clearance fits are used for miniature and extra-small ball bearings. Fits of considerable interference or clearance can be detrimental.

Selective fitting is recommended if it is possible to select shafts and housings with bearings classified according to bore and outside diameters. Selective fitting helps narrow down the range of fits so that bearing performance can be effectively improved. In miniature and extra-small ball bearings, housings made of non-ferrous metal such as an aluminum alloy are frequently used. In applications with wide temperature ranges, the housings should be fitted with a steel liner. At low temperatures, the steel liner prevents housing shrinkage and at high temperatures, it minimizes expansion. Table 5.1 shows fits for tolerance miniature and extra-small ball bearings.

Operating Condition		Principal Application	Fit	Bearing Class	Single plane mean bore diameter deviation Δd_{mp}		Shaft diameter dimensional tolerance		Fit ¹⁾	
	1				upper	lower	upper	lower		
	Medium ~ high speed	Cleaners Electric power tools	Light	JIS Class 5	0	-5	+2.5	-2.5	7.5T	2.5L
Innor ving rotation	Light ~ medium load	Rotary encoders	interference fit	JIS Class 4	0	-4	+2.5	-2.5	6.5T	2.5L
Inner ring rotation	Low speed Light load	Small motors Servo motors Fan motors	Slight clearance fit	JIS Class 5	0	-5	-2.5	-7.5	2.5T	7.5L
				JIS Class 4	0	-4	-2.5	-7.5	1.5T	7.5L
	Medium ~ high speed	Polygon mirror scanners	Selective fit required	JIS Class 4	0	_4	_1	-5	_	1 L
	Light load	scanners								
speed	Low ~ high	Ĵ,	Slight clearance fit	JIS Class 5	0	-5	-2.5	-7.5	2.5T	7.5L
	Light load	Tape guide rollers		JIS Class 4	0	-4	-2.5	-7.5	1.5T	7.5L

(1) Fit on shaft (d < 10 mm)

Unit : um

[Note] 1) Symbol T denotes interference, and L, clearance

Operating Condition		Principal Application	Fit	Bearing Class	Single plane mean outside diameter deviation Δ_{Dmp}		Housing bore diameter dimensional tolerance		Fit ¹⁾	
	1				upper	lower	upper lower			
	Medium ~ high speed	Cleaners Electric power tools	Clearance fit	JIS Class 5 ²⁾	0 0	-5 -6	+5	0	0 0	10 L 11 L
Inner ring rotation	Light ~ medium load	Rotary encoders	otary		0 0	-4 -5	+5	0	0 0	9 L 10 L
	Low speed Light load	Small motors Servo motors Fan motors	Slight clearance fit	JIS Class 5 ²⁾	0 0	5 6	+2.5	-2.5	2.5T 2.5T	7.5L 8.5L
				JIS Class 4 ²⁾	0 0	-4 -5	+2.5	-2.5	2.5T 2.5T	6.5L 7.5L
	Medium ~ high speed Light load	Polygon mirror scanners	Slight clearance fit	JIS Class 4 ²⁾	0 0	4 5	+3	0	0 0	7 L 8 L
Outer ring rotation	Low ~ high Pinch rollers	Slight	JIS Class 5 ²⁾	0 0	5 6	+2.5	-2.5	2.5T 2.5T	7.5L 8.5L	
	Light load	Tape guide rollers	clearance fit	JIS Class 4 ²⁾	0 0	-4 -5	+2.5	-2.5	2.5T 2.5T	6.5L 7.5L

(2) Fit in housing $(D \leq 30 \text{ mm})$

Unit : µm

[Notes] 1) Symbol T denotes interference, and L, clearance

2) The figures for the upper and lower rows in the fields indicating the tolerances for the bearing outside diameter and fit for JIS Classes 5 and 4, are applicable in cases where $D \leq 18 \text{ mm}$ and $18 < D \leq 30 \text{ mm}$, respectively

6. Bearing Internal Clearance

The internal clearance of a bearing refers to the amount of movement of the inner ring, while the outer ring remains stationary, or vice versa.

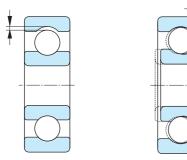
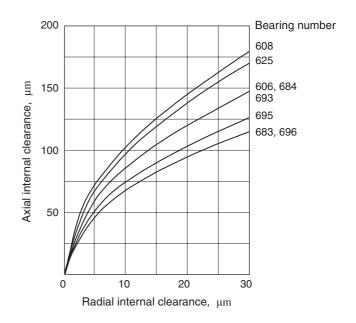
Movement in the radial direction reveals a radial internal clearance, while movement in the axial direction shows an axial internal clearance (see Fig. 6.1).

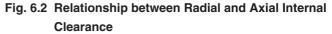
In measuring internal clearances of bearings, a specified measuring load is generally applied to obtain stable measurements. Accordingly, measurements taken this way are greater than the true clearance (known as the theoretical clearance) due to elastic deformation resulting from the measuring load.

In general, bearing internal clearances are specified in theoretical clearances.

The amount of internal clearance during operation (known as the running clearance) influences bearing performance characteristics, such as rolling life, heat generation, noise, and vibration.

Radial internal clearance Axial internal clearance


Fig. 6.1 Bearing Internal Clearance

Tables 6.1 and 6.2 show radial internal clearances and selection standards for miniature and extra-small ball bearings.

The axial internal clearance is dependant on the ball size, curvature of raceways, and radial internal clearance. If the radial internal clearance is constant, the axial internal clearance becomes greater as the ball size and raceway curvature increase.

Fig. 6.2 shows an example of the relationship between radial and axial internal clearance.

Table 6.1 Radial Internal Clearances of Miniature and Extra-Small Ball Bearings Unit :									Unit : μm			
Clearance Code	М	1	M	2	M	3	М	4	М	5	М	6
Clearance Code	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.	min.	max.
Clearance	0	5	3	8	5	10	8	13	13	20	20	28

[Remark] To convert to the measured clearances, add the correction value shown below

Measure	d Load, N	Clearance Correction Value, μm
Miniature ball bearings	Extra-Small ball bearings	M 1, M 2, M 3, M 4, M 5, M 6
2	.3	1

[Remark] Miniature ball bearings-----less than 9 mm in outside diameter

Extra-Small ball bearings...9 mm or more in outside diameter and less than 10 mm in bore diameter

Application	Bearing Performance Requirements	Clearance Code	Radial Internal Clearance (µm)	Remark
Precision gear instruments Servo mechanism Equipment used at low- speed	 Ensure narrow clearance without clearance adjustment in axial direction Frictional torque is not taken into consideration Neither durability nor rigidity for axial load is required 	M1 M2	0~ 8	 Interference fit can not be used
Axial flow fans Equipment used at low or medium speed and at normal temperatures	 Normal frictional torque is accepted for operation with axial load Carry out clearance adjustment in axial direction Ordinary durability and rigidity are required for axial load 	M3 M4	5 ~ 13	 Interference fit can not be used in principle
Cleaners Equipment used under high temperature and high- speed conditions	 Under axial load, frictional torque should be reduced Carry out clearance adjustment in axial direction High durability against radical changes in temperature High durability and rigidity are required for axial load 	M5 M6	13 ~ 28	 Preloading by a spring is required Interference fit may be used

Table 6.2 Selection Standards for Radial Internal Clearances of Miniature and Extra-Small Ball Bearing

7. Preload of Bearings

In general, bearings are used with the proper internal clearance during operation.

Some bearings for small motors are given a negative clearance by applying a preset axial load so as to minimize vibration. This way of using bearings is known as preloading.

7.1 Objective of Preload

- To improve the positioning accuracy in the radial and axial directions, and to improve the running accuracy, by minimizing runout
- To prevent bearing noise caused by vibration and resonance

7.2 Methods for Preloading

Preload is applied by fixed-position preloading or constant pressure preloading.

Comparison between Fixed-position Preloading and Constant-pressure Preloading

- Given the same preload force, fixed-position preloading produces smaller axial displacement. In other words, high rigidity is readily achieved by fixed-position preloading
- In constant-pressure preloading, springs absorb load variations and volume changes of the shaft caused by the temperature differentials between the shaft and housing. Hence the preload force varies little and is stable
- With fixed-position preloading a greater preload force can be realized

Consequently, fixed-position preloading is suitable when high rigidity is required. Constant-pressure preloading is appropriate for high-speed applications and the prevention of axial vibrations.

7.3 Preload Force

Preload can be applied to prevent noise caused by vibration. If, however, excessive preload is applied to a bearing, unusual heat, an increase in friction, and/or a reduction in fatigue life may result. Accordingly, the chosen preload force should fall within a range that produces no adverse effect.

In bearings for small motors, a wavy washer is generally used to apply light preload.

A guide to preload forces for miniature and extra-small ball bearings is shown in Table 7.1.

Ball Bearings							
Preload	Preload Force	Feature					
Light preload	1.0% <i>C</i>	Axial rigidity not required Low torque is important					
Medium preload	1.5% <i>C</i>	Both axial rigidity and low torque are required					
Heavy preload	2.0% C	Axial rigidity is important Rather high torque is acceptable					

Table 7.1 Preload Forces for Miniature and Extra-Small Ball Bearings

 C : basic dynamic load rating of bearing, kN

8. Bearing Lubrication

8.1 Objective of Lubrication and Methods

Lubrication is critical for bearings. The suitability of a lubricant and lubrication method greatly influences bearing life.

[Functions of Lubrication]

- Lubrication of each part of a bearing reduces friction and wear
- Removes heat generated in bearing by friction and other causes
- Extends bearing fatigue life by constantly forming an appropriate oil film between the rolling contact surfaces
- Provides rust prevention and dust proofing

Bearing lubrication methods take advantage of either grease or oil. Table 8.1 shows a general comparison of these methods.

Item	Grease	Oil
Sealing device	Simple	Rather complicated (Care should be taken regarding maintenance)
Lubrication performance	Good	Excellent
Rotation speed	Low ~ medium speed	Suitable also for high speed applications
Replacement of lubricant	Rather cumbersome	Simple
Lubricant life	Relatively short	Long
Cooling effect	None	Good (circulation required)
Dust filtration	Difficult	Simple

Table 8.1 Comparison of Grease and Oil Lubrication

8.2 Grease Lubrication

In general, shielded and sealed bearings have a suitable quantity of lubricating grease ready packed, so they can be used in their original condition.

Normally, the quantity of sealed grease is approximately 30% of inner space of the bearing. If more grease is applied, the bearing torque will increase which may lead to a leakage of grease or an increase in heat. Therefore, care should be exercised in this regard.

Grease life depends on its oxidation, thermal stability and the evaporation rate of the base oil. As bearing performance is greatly affected by the brand and type of grease used, consult JTEKT prior to selecting a grease.

Table 8.2 shows general-purpose lubricating greases used in miniature and extra-small ball bearings. Lubricating greases developed by JTEKT are shown in Table 8.3.

8.3 Oil Lubrication

Oil lubrication is superior to grease lubrication if it is necessary to reduce the starting or running torque to an extremely small value or if the load is very small and the rotation speed is high. Specifically, if a low torque is required in a low-speed application, bearings are run with a few drops of oil.

For high-temperature and high-speed applications, oil jet or oil mist lubrication is used. Oil mist lubrication is especially effective in high-speed applications.

JTEKT's standard lubricating oil is ASF12 (MIL-L-6085A)

8.4 Grease Life of Shielded and Sealed Miniature and Extra-Small Ball Bearings

Grease life of shielded and sealed miniature and extrasmall ball bearings in which grease is sealed is estimated by the equation below:

$\log L = 6.10 - 4.40 \times 10^{-6} d_{\rm m} n$
$-2.50\left(rac{P_{ m r}}{C_{ m r}}-0.05 ight)$
$-(0.021 - 1.80 \times 10^{-8} d_{\rm m} n) T$
where,
L : grease life, h
$d_{\rm m}$: $\frac{D+d}{2}$, mm
(D: bearing outside diameter, d: bearing bore diameter)
n : rotation speed, min ⁻¹
$P_{\rm r}$: equivalent radial load, N
$C_{ m r}$: basic dynamic load rating of bearing, N
<i>T</i> : bearing temperature, °C
To apply Equation (8.1), the conditions below must be met.

- (1) Bearing temperature $T \,^{\circ}C$ The equation is applicable when $T \leq 120$ (If T < 50, assume that T = 50) If T > 120, consult JTEKT.
- (2) Rotation speed $d_m n$ The equation is applicable when $d_m n \leq 500 \times 10^3$ (If $d_m n < 125 \times 10^3$, use $d_m n = 125 \times 10^3$) If $d_m n > 500 \times 10^3$, consult JTEKT.
- (3) Load $\frac{P_r}{C}$

The equation is applicable when $\frac{P_r}{C_r} \leq 0.2$ (If $\frac{P_r}{C_r} < 0.05$, consider $\frac{P_r}{C_r} = 0.05$) If $\frac{P_r}{C} > 0.2$, consult JTEKT.

8. Bearing Lubrication

Code	Brand	Thickener	Base Oil	Consistency (after 60 rounds) (of mixing	Operating Temperature Range (°C)	Application		
SR	SR oil	Lithium soap	Ester oil	248	-40~130	For wide temperature range		
B5	Beacon 325	Lithium soap	Diester oil	273	-50~100	For low torque and low temperatures		
4M	SH44M	Lithium soap	Silicone oil	241	-30~180	For high temperatures		

Table 8.2 General-purpose Lubricating Greases

Table 8.3 Lubricating Greases Developed by JTEKT

Code	Brand	Thickener	Base Oil	Consistency (after 60 rounds) of mixing	Operating Temperature Range (°C)	Application	Application Example
KN	KNG 144	Diurea	Polyalpha olefin Mineral oil	247	-30~130	For wide temperature range	General-purpose motors, HDD pivots
K7	KNG 170	Diurea	Polyalpha olefin	245	-40~150	For high speed rotations and high temperatures	General-purpose motors
52	KAM 5	Lithium soap	Ester oil Etheral oil	267	-30~140	For wide temperature range	General-purpose motors, air conditioner motors
VC	KVC	Diurea	Polyalpha olefin Etheral oil	285	-40~150	For high speed rotations and high temperatures	Cleaners
KZ	KZ grease	Fluorinated ethylene resin	PFPE	280	0~250	For high temperatures	Copier hot rollers
L7	ES-804	Fluorinated ethylene resin	fluorine oil	332	-30~250	For low torque and high temperatures	Car motors

9. Bearing Torque

There are some factors that have considerable influence on the frictional torque of bearings. Such factors include the cage sliding friction, rolling friction caused by load, and the viscous resistance of the lubricant.

It is possible to minimize the cage sliding friction and the rolling friction by means of an appropriate design and a tolerance finishing of the parts. Bearing torque fluctuates depending on slight variations and waviness in the raceway surfaces as these impair movements of the roiling elements.

The torque also varies according to the viscous resistance of the lubricant, which changes with rotation speed, the quality and quantity of lubricant, and temperature.

The frictional torque of a bearing is classified into starting torque and running torque.

The starting torque is that which is required to overcome the bearing's static friction. The starting torque varies depending on minor differences in tolerance of the raceway surfaces and rolling elements and the position of the rolling elements on the raceway surface immediately before the start.

The running torque refers to the frictional torque of a running bearing. Its magnitude changes with rotation speed, the quality and quantity of lubricant, and atmospheric temperature.

Typical data on running torque are shown in Figs. 9.1 to 9.3.

(1) Relationship between Rotation Speed and Running Torque

In general, running torque increases as rotation speed increases.

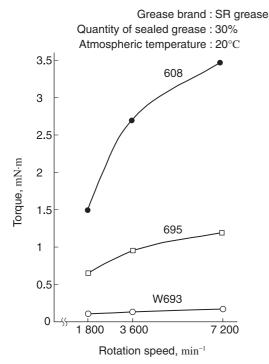


Fig. 9.1 Relationship between Rotation Speed and Running Torque

(2) Relationship between Temperature and Running Torque

Running torque increases as temperature decreases.

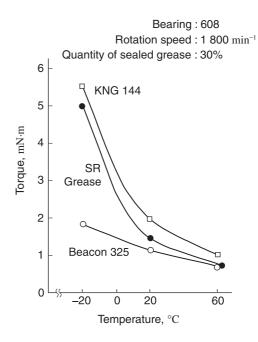


Fig. 9.2 Relationship between Temperature and Running Torque

(3) Relationship between Quantity of Sealed Grease and Running Torque

Running torque increases as the quantity of sealed grease increases.

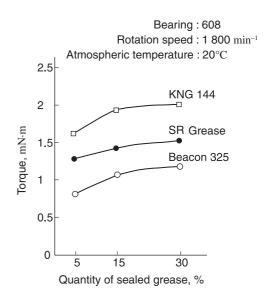


Fig. 9.3 Relationship between Quantity of Sealed Grease and Running Torque

10. Bearing Materials

Most bearing rings and rolling elements of miniature and extra-small ball bearings are made of high carbon chrome bearing steel. Where bearings need to be corrosion resistant, martensite stainless steel is used.

Materials used for miniature and extra-small ball bearings and their properties are shown in Table 10.1. Chemical composition of materials used for bearing rings and rolling elements in miniature and extra-small ball bearings are shown in Table 10.2. For cages and shields, materials such as carbon steel sheets, stainless steel sheets (JIS SUS300/400 series), phenol resin, and reinforced polyamide resin are used.

Resin products used for miniature and extra-small ball bearings and their respective operating temperature ranges are shown in Table 10.3.

	Bearing ring / rolling element	High carbon chro	Stainless steel			
Material	Cage	Carbon steel sheet, stainless steel sheet	Reinforced polyamide resin	Stainless steel sheet		
	Shield / seal Carbon steel sheet, stainless steel sheet Nitrile rubber		Stainless steel sheet			
	Operating temperature ¹⁾	≦1	≦ 300°C			
	Dynamic load rating	Hi	85% of bearing steel			
Broporty	Static load rating	Hi	80% of bearing steel			
Property	Frictional torque	Low		Low Higher than bearin		Higher than bearing steel
	Application	General, high-tolerance purposes	High-speed applications	Corrosion, heat resistance		

Table 10.1 Materials Used for Miniature and Extra-Small Ball Bearings and Their Properties

[Note] 1) Actual operating temperature is limited by cage material, seal material, and lubricant.

Table 10.3 shows a guideline for operating temperature ranges in relation to resin cages.

If it is necessary to use a lubricant containing a specific additive, consult JTEKT.

Table 10.2 Chemical Composition of Materials Used for Bearing Rings and Rolling Elements in Miniature and Extra-Small Ball Bearings

Steel Class	Code	Similar Steel	Chemical Composition, %						
Sleer Class	Code	Class	С	Si	Mn	Р	S	Cr	Мо
High carbon chrome bearing steel	JIS SUJ2	SAE 52100	0.95 ~1.10	0.95 ~0.35	≦0.50	≦0.025	≦0.025	1.30 ~1.60	≦0.08
Stainless steel	JIS SUS440C	SAE 51440C	0.95 ~1.20	≦1.00	≦1.00	≦0.040	≦0.030	16.00 ~18.00	≦0.75

[Remark] Stainless bearings with better noise performance are also available.

Table 10.3 Resin Products used for Miniature and Extra-Small Ball Bearings and Their Respective Operating Temperature Ranges

Resin	Code	Operating Tempe	erature Range, °C	
product		Temporary ¹⁾	Continued use	
Resin cage	FG	-40~180	-30~150	

[Note] 1) "Temporary" denotes 2 to 3 minutes. Operation at such temperatures should not exceed 30 minutes.

11. Handling of Bearings

11.1 General Precautions for Handling

Since miniature and extra-small ball bearings are made to a higher tolerance than ordinary mechanical parts, one should accordingly handling them with due care.

- 1) Maintain bearings and their vicinity clean
- 2) Handle with care

A severe shock to a bearing by rough handling may result in flaws, dents, fractures, and chipping.

- 3) Use the correct tools for handling
- Exercise care for the prevention of rust Avoid handling them in a highly humid place. Wear

gloves to prevent body oils from contacting the bearing surface.

- 5) Bearings should be handled by knowledgeable persons
- Work standards for handling bearings should be formulated
 - Storage of bearings
 - Cleansing of bearings and surrounding parts
 - Inspection of dimensions and finish of parts
 - surrounding bearings
 - Mounting
 - Inspection after mounting
 - Maintenance inspection (regular inspection)

11.2 Storage of Bearings

Bearings are shipped after high-quality rust preventive oil is applied to them followed by suitable wrapping. Their quality is guaranteed as long as the wrapping is not damaged.

Bearings, if to be stored for an extended time, should be stored on a shelf at least 30 cm above the floor under conditions of 65% or less humidity at a temperature of around 20°C.

Avoid any place that allows direct exposure to the sun or contact with a cool wall.

11.3. Mounting Bearings

11.3.1 Precautions for Mounting

1) Preparation

Unwrap bearings just prior to mounting because they are wrapped to prevent rust.

The rust preventive oil applied to bearings offers good lubrication, so bearings for general use or grease-sealed bearings can be used immediately, without cleansing. For measuring instruments and open type bearings for high-speed applications, remove preventive oil with clean washing oil. As rust is easily formed on bearings after they are cleansed, do not leave them unattended for long periods.

2) Inspection of Shaft and Housing

Clean the shaft and housing and verify that they are flawless and have no burrs caused by machining. The inside of the housing should be absolutely free from any residual lapping compound (SiC, Al₂O₃, etc.), molding sand, or chips.

Next, ensure that the shaft and housing are fabricated to the dimensions, shapes, and finish as specified on the design drawing.

Measure the shaft diameter and bore diameter of the housing at several positions as shown in Figs. 11.1 and 11.2. Additionally, carry out a thorough inspection of the shaft and housing fillet radius and shoulder squareness.

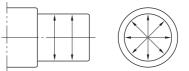


Fig. 11.1 Shaft Diameter Measuring Positions

Fig. 11.2 Measuring Positions of Housing Bore Diameter

11.3.2 Mounting Bearings

Different methods are used to mount bearings depending on model and fitting conditions.

Since, in many cases, the inner ring rotates, an interference fit is used for the inner rings and a clearance fit is used for the outer rings. If the outer ring is to rotate, an interference fit is used for the outer rings.

Table 11.1 shows methods used to mount bearings with an interference fit.

11.4 Trial Run and Inspection

Trial run and inspection are carried out when bearings have been mounted, to check whether the mounting is appropriate.

In the case of small machines, the rotation condition is examined initially by manual operation. After confirmation that no fault exists as noted below, a further inspection is carried out by a powered run.

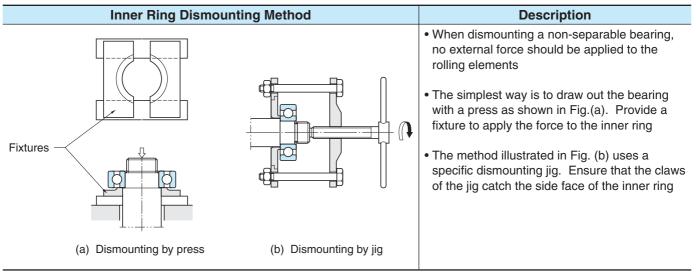
- - torque mounting, mounting errors, etc.

Mounting methods	Description
	 Whatever method is used, force should be applied to the bearing evenly. For that purpose, use a fixture and fit bearing gently. Do not apply a fixture to the outer ring for press-fitting of the inner ring, or vice versa.
(Hydraulic pump) (A) Using press fit (the most widely used method)	Mounting fixture (Inner ring press fit) (Outer ring press fit) (Outer ring press fit) (Inner ring press fit of) (Inner ring and outer ring)

Table 11.1 Press fit of bearings with cylindrical bores

11.5 Bearing Dismounting

Before dismounting bearings, consider their use after dismounting.


If bearings are to be disposed of, adopt as effortless a method as possible. Dismounting bearings for re-use or to identify causes of failure should be carried out with the same care as at time of mounting to avoid damage.

Specifically, bearings fitted with an interference are likely to be damaged during dismounting, how to dismount bearings should be taken into consideration at the design stage. It is recommended to design and make an appropriate jig for dismounting.

Marking the direction and position on the bearing is useful for identifying the causes of failure

[Dismounting Methods]

Table 11.2 shows common methods used for dismounting bearings for reuse or to investigate causes of failure, with interference fits.

Table 11.2 Dismounting of Cylindrical Bore Bearings

12. Ceramic Bearings

Ceramics (silicon nitride) are suitable for making highspeed and light-weight bearings. Ceramic bearings have excellent features in that they are highly rigid, heat resistant, and highly corrosion resistant, as well as non-magnetic and non-conductive. Ceramic miniature and extra-small ball bearings are used in a wide range of advanced technological areas.

For details of ceramic bearings, refer to the JTEKT Extreme Special Environment Bearings (EXSEV bearings) Catalog, CAT. NO. B2004E.

12.1 Properties of Ceramics

Table 12.1 shows a comparison between characteristics of ceramics and high carbon chrome bearing steel.

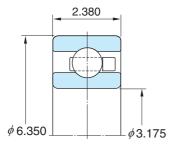
Extreme Special Environment Bearings (EXSEV bearings)

When bearings are used under high-temperature, vacuum and cleaning and required for special characteristics such as high-speed, light weight and small size, insulation, nonmagnetic, they are considered as being used under special environments. EXSEV bearings are suitable for such environments. When bearings are to be used under special environments, contact JTEKT.

Item	Unit	Ceramics (Si₃N₄)	Bearing Steel (SUJ 2)	Features and Characteristics of Ceramics
Heat resistance	°C	800	180	Maintains high load capacity at high temperatures
Density g/cm ³		3.2	7.8	Reduction in centrifugal force of rolling elements (balls and rollers) → Lengthened life and prevention of temperature increase
Coefficient of linear 1/ expansion		3.2×10^{-6}	$12.5 imes 10^{-6}$	Small changes in internal clearance caused by temperature increase → Prevention of vibrations, and small changes in preload force
Vickers' hardness	HV	1 500	750	
Modulus of longitudinal GPa		320	208	Minor deformation in rolling contact zone → High rigidity
Poisson's ratio		0.29	0.3	
Corrosion resistance		Good	No good	Serviceable in special environments such as acid or alkali solutions
Magnetism		Non-magnetic material	Ferromagnetic material	Minor rotation fluctuations caused by magnetic forces in a strong magnetic field
Electrical conductivity		Insulant	Electrical conductor	Prevention of electric pitting
Bonding form of material		Covalent bond	Metallic bond	Less likely to generate adhesion (transfer) between rolling contacts if oil film diminishes

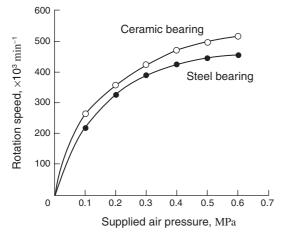
Table 12.1 Comparison between Characteristics of Ceramics (Si₃N₄) and High Carbon Chrome Bearing Steel (SUJ 2)

Miniature and Extra-Small Ball Bearings


12.2 Features of Ceramic Bearings

12.2.1 High rotation speed

Ceramics are lighter than bearing steel. Accordingly, the centrifugal force and sliding caused by gyroscopic moments are reduced in rolling elements rotating at a high speed if they are made of ceramics.

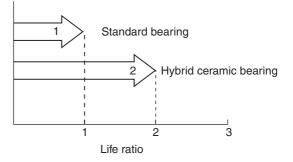

Consequently, ceramics are highly effective in controlling temperature increases.

[Test bearing]

Bearing	3NCOB74ST4M3
Ball	Ceramics (silicon nitride)
Inner and Outer Rings	Stainless steel
Cage (high-speed)	Heat-resistant reinforced polyimide resin

[Performance]

- Specification : Air turbine
- · Ceramic bearings are capable of rotating at a 15% higher speed than steel bearings


12.2.2 Long Life (grease life)

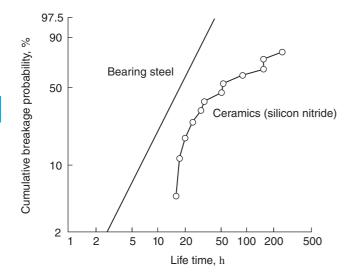
The service life of hybrid ceramic bearings is 2 times longer than that of steel bearings with grease lubrication.

(1) Grease lubrication example

[Test bearing] Bearing: 695 Rotation speed : 12 000 min⁻¹ Load : Preloading 14.7 N Grease : SR grease (Grease fill is 25% of inner space) Temperature : 70°C

[Life ratio of bearing]

(2) Oil lubrication example Balls (SUJ 2) 3/8" × 3 Cage Cage Test piece (Ceramic)


[Test method]

Test machine : Thrust Tester

Rotation speed : 1 400 min⁻¹

Load : Axial load 1 176N (per ball)

Lubricant : Turbine Oil (equivalent to ISO VG56)

12.2.3 Light Weight

The density of ceramics is approximately 40% of bearing steel. Therefore, ceramics are an ideal material for reducing the weight of bearings.

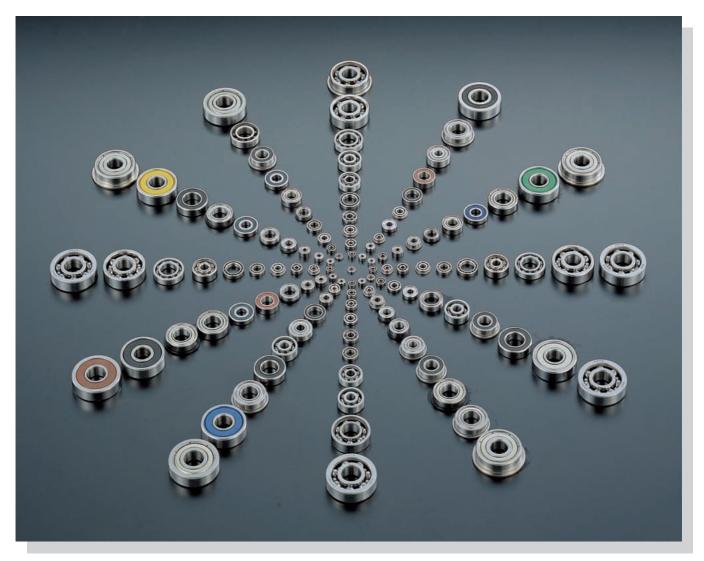
12.2.4 Small Dimensional Changes with Respect to Temperature

The coefficient of linear expansion of ceramics is small (25% of bearing steel).

12.2.5 High Rigidity

The hardness and the modulus of longitudinal elasticity are greater than that of bearing steel.

12.2.6 Insulation


Prevents electric pitting

12.3 Application Examples of Ceramic Bearings

- Fan motors
- Turbochargers
- Spindle motors
- Dental hand pieces
- Polygon scanners
- Yarn twisting spindles
- Stepping motors
- Heat rollers
- · Semiconductor production facilities
- Vacuum equipment
- Aero space development related equipment, etc.

JTEKT is engaged in the manufacture and sales of all types of tolerance miniature and extra-small ball bearings such as open and sealed types as well as those with outer ring flange and locating snap ring. Our recent developments, which include ceramic bearings, extreme special environment bearings (EXSEV bearings) and those with resin flanges, are used in a variety of applications.

Miniature and Extra-Small Ball Bearings

• Ceramic Bearings

• Extreme Special Environment Bearings (EXSEV Bearings)

• Miniature and Extra-Small Ball Bearings with Resin Flanges (FN Bearings)

• Miniature and Extra-Small Ball Bearings with Resin Seals

• Miniature and Extra-Small Ball Bearings with Pulleys

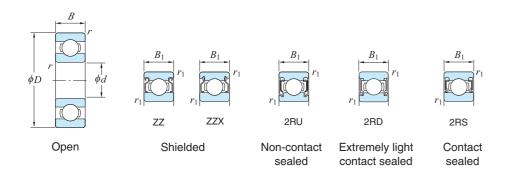
We also produce a number of applied products such as bearings with resin or rubber pulleys. For additional products, consult JTEKT.

Miniature One-way Clutches

(Miniature one-way clutches with resin pulleys or resin gears are also available)

Miniature Drawn Cup Needle Roller Bearings

• Miniature Linear Ball Bearings


Bearing Dimension Tabl	es
-------------------------------	----

Metric Series Deep Groove Ball Bearings

1.	Standard Series	36
2.	Narrow-width Series	40
3.	Standard Series with Flanges	42
4.	Standard Series with Resin Flange [FN Bearings]	46

 ϕd_a

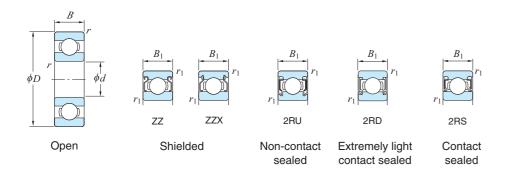
d 1~4 mm

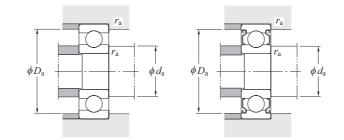
$P_{0r} = 0.6F_r + 0.5F_a$ (when the value of $P_{0r} <$										of $P_{0r} < F_r$, P_{0r}	$=F_{\rm r}$)												
	Bo	undary d (mi		ons		Basic loa		Factor		imiting spe Grease lub.	eeds (min⁻	-1) Oil lub.		В	earing No.			Mountin	ig dimen (mm)		(Refer.) Mass		Drowing
d	D	В	B_1	r ¹⁾ (min.)	$r_1^{(1)}$ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	Open (ZZ, 2RU)	(2RD)	(2RS)	$\begin{bmatrix} Open \\ Z \end{bmatrix}$	Open	Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	d _a (min.)	D _a (max.)	ra	(g)	Full-size [Drawing
1	3 3 4	1 1.5 1.6	_ _ _	0.07 0.08 0.1	_ _ _	0.10 0.08 0.14	0.03 0.02 0.04	11.6 12.8 11.4	130 000 130 000 120 000	- - -	- - -	150 000 150 000 140 000	681 ML1003 691	- - -	- - -		- - -	1.6 1.6 1.8	2.4	0.07	0.03 0.05 0.1	© 681	6
1.2	4	1.8	-	0.08	_	0.11	0.03	11.4	120 000	_	_	140 000	ML1204	_	-	_	_	1.8	3.4	0.07	0.1		691
1.5	4 5 6	1.2 2 2.5	2 2.6 3	0.1 0.15 0.1	0.1 0.15 0.1	0.11 0.24 0.33	0.03 0.07 0.10	13.2 13.3 11.4	120 000 110 000 86 000			140 000 130 000 100 000	68/1.5 69/1.5 ML1506	W68/1.5 ZZ W69/1.5 ZZX WML1506 ZZX	- - -		- - -	2.3 2.7 2.3	3.8	0.1 0.15 0.1	0.1 0.1 0.3	() ML1204	68/1.5
2	5 5 6	1.5 2 2.3	2.3 2.5 3	0.1 0.1 0.15	0.1 0.08 0.1	0.17 0.17 0.33	0.05 0.05 0.10	13.3 13.3 11.4	98 000 98 000 86 000	_ _ _	_ _ _	110 000 110 000 100 000	682 ML2005 692	W682 ZZX WML2005 ZZ W692 ZZ	- - -	- - -	- - -	2.8 2.6 3.2	4.2	0.07	0.1 0.1 0.2	() ML1506	682
	6 7 7	2.5 2.5 2.8	3 3 3.5	0.1 0.15 0.15	0.1 0.15 0.15	0.33 0.39 0.39	0.10 0.13 0.13	11.4 12.6 12.6	86 000 67 000 67 000	_ _ _	_ _ _	100 000 79 000 79 000	ML2006 ML2007 602	WML2006 ZZX WML2007 ZZX W602 ZZX			- - -	2.8 3.2 3.2	5.8		0.3 0.4 0.5	692	602
2.5	6 7 8	1.8 2.5 2.5	2.6 3.5 -	0.1 0.15 0.1	0.1 0.15 -	0.19 0.31 0.43	0.06 0.11 0.15	14.3 13.7 13.4	75 000 66 000 63 000	_ _ _	_ _ _	89 000 79 000 75 000	68/2.5 69/2.5 ML2508/1E		- - -		- - -	3.3 3.7 3.3	7.2	0.15 0.1	0.2 0.4 0.6	68/2.5	
3	8 6 7 8	2.8 2 2.5	4 2.5 3 –	0.15 0.08 (0.15) 0.1	0.1 0.05 (0.15) -	0.55 0.19 0.31 0.40	0.17 0.06 0.11 0.14	11.5 14.3 13.7 13.4	64 000 75 000 66 000 63 000	- - - -	_ _ _ _	76 000 89 000 79 000 75 000	ML2508 ML3006 683 ML3008	WML2508 ZZX WML3006 ZZ W683 ZZ	 	 	- - - -	3.7 3.6 4.2 3.8	5.4 5.8	0.1 0.1	0.6 0.2 0.3 0.5	ML3006	(C) ML2508
	8 9 10 13	3 3 4 5	4 5 4 5	0.15 0.15 0.15 0.2	0.15 0.15 0.15 0.2	0.55 0.43 0.63 1.30	0.17 0.16 0.22 0.49	11.5 14.0 12.8 12.3	64 000 60 000 52 000 44 000	_ _ _ _	_ 44 000 _	76 000 72 000 63 000 54 000	693 603 623 633	W693 ZZ W603 ZZX 623 ZZ 633 ZZ	- - -	- - -	_ 623 2RS _	4.2 4.2 4.2 4.6	7.8 8.8	0.15	0.6 0.9 1.6 3.0		693
4	7 8 9	2 2 2.5	2.5 3 4	0.08 0.1 (0.15)	0.05 0.08 (0.15)	0.26 0.40 0.64	0.11 0.14 0.23	15.1 14.6 12.8	64 000 61 000 59 000	_ _ _	- - -	76 000 73 000 70 000	ML4007 ML4008 684	WML4007 ZZ WML4008 ZZ W684 ZZ	- - -	- - -	- - -	4.6 4.8 5.2	7.2 7.8	0.08 0.1	0.2 0.4 0.6	633	ML4007
	10 11 12	3 4 4 5	4 4 4	0.15 0.15 0.2	0.1 0.15 0.2	0.65 0.96 0.96	0.23 0.35 0.35	13.3 12.4 12.4	56 000 54 000 53 000		_ 44 000 _ 20 000	67 000 65 000 63 000	ML4010 694 604	WML4010 ZZ 694 ZZ 604 ZZ	- 694 2RU -	-	- 694 2RS -	5.2 5.2 5.6	9.8 10.4	0.2	1.0 1.8 2.1	ML4010	
	13 16	5 5	5 5	0.2 0.3	0.2 0.3	1.30 1.35	0.48 0.52	12.3 12.4	44 000 40 000	_	39 000 _	54 000 49 000	624 634	624 ZZ 634 ZZ	624 2RU _	_	624 2RS _	5.6 6	11.4 14	0.2 0.3	2.9 5.3		604

[Note] 1) Numerical values in () do not conform to JIS B 1521

Miniature and Extra-Small Ball Bearings

Dynamic equivalent radial load $P_r = XF_r + YF_a$


	•				-
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$	> e
C_{0r}		X	Y	X	Y
0.172	0.19				2.30
0.345	0.22				1.99
0.689	0.26				1.71
1.03	0.28				1.55
1.38	0.30	1	0	0.56	1.45
2.07	0.34				1.31
3.45	0.38				1.15
5.17	0.42				1.04
6.89	0.44				1.00


[Note] 1) Factor f_0 is shown in the bearing dimension table.

2) *i* means the number of rows of rolling elements in a bearing. Static equivalent radial load

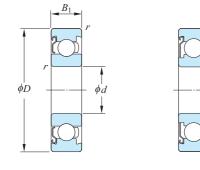
 $P_{0} = 0.6F_{1} + 0.5F_{2}$ (when the value of $P_{0} < F_{2}$, $P_{0} = F_{2}$)

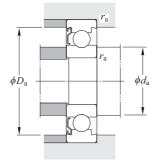
d 5~9 mm

	Во	undary d	limensio	ons		Basic lo	ad ratings	Factor	L	imiting sp.	eeds (min ⁻	1)						Mount	ting dime	ensions		
		(m	m)			(1	cN)	Factor		Grease lub.		Oil lub.		D	earing No.				(mm)		(Refer.) Mass	Full-size Drawing
d	D	В	B_1	<i>r</i> ¹⁾ (min.)	$r_1^{(1)}$ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	Open ZZ, 2RU	(2RD)	(2RS)	$\begin{bmatrix} Open \\ Z \end{bmatrix}$	Op	Open Shielded	Non-contact sealed	Extremely light contact sealed	Contact sealed	d _a (min.)	D _a (max.)	r _a (max.)	(g)	i uli-size Diawing
5	8 9 10	2 2.5 3	2.5 3 4	0.08 0.1 0.1	0.05 0.08 0.1	0.22 0.43 0.43	0.09 0.17 0.17	15.7 15.3 14.8	59 000 56 000 55 000	- - -	- -	70 000 67 000 65 000	ML500 ML500 ML501	009 WML5009 ZZ				5.6 5.8 5.8	7.4 8.2 9	0.05 0.08 0.1	0.3 0.5 0.9	
	11 13 14	3 4 5	5 4 5	0.15 0.2 0.2	0.15 0.2 0.2	0.71 1.10 1.30	0.28 0.43 0.49	12.8 12.3 12.3	53 000 50 000 50 000	45 000 _	42 000 _	63 000 60 000 60 000	685 695 605	W685 ZZ 695 ZZ 605 ZZ	695 2RU _		695 2RS _	6.2 6.6 6.6	9.8 11.4 12.4	0.15 0.2 0.2	1.0 2.2 3.5	ML5010 605
	16 19	5 6	5 6	0.3 0.3	0.3 0.3	1.75 2.35	0.67 0.89	12.4 12.3	40 000 35 000	36 000 32 000	33 000 27 000	49 000 43 000	625 635	625 ZZ 635 ZZ	625 2RU 635 2RU	625 2RD 635 2RD	625 2RS 635 2RS	7 7	14 17	0.3 0.3	5.0 8.5	
6	10 12 13	2.5 3 3.5	3 4 5	0.1 0.15 0.15	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.7 14.5 13.7	53 000 49 000 48 000	_ 43 000	_ 37 000 36 000	63 000 59 000 57 000	ML601 ML601 686		- - -	_ W686 2RD	_ WML6012 2RS W686 2RS	6.8 7.2 7.2	9.2 10.8 11.8	0.08 0.1 0.15	0.6 1.3 1.8	625 ML6010
	15 17 19	5 6 6	5 6 6	0.2 0.3 0.3	0.2 0.3 0.3	1.35 1.95 2.35	0.52 0.74 0.89	12.4 12.2 12.3	45 000 43 000 35 000	41 000 39 000 32 000	32 000 _ 27 000	54 000 51 000 43 000	696 606 626	696 ZZ 606 ZZ 626 ZZ	696 2RU 606 2RU 626 2RU	696 2RD 606 2RD 626 2RD	696 2RS - 626 2RS	7.6 8 8	13.4 15 17	0.2 0.3 0.3	3.9 5.8 8.1	696
	19 22	8 7	8 7	0.3 0.3	0.3 0.3	2.60 3.30	1.05 1.35	12.3 12.4	40 000 31 000	-	23 000	47 000 37 000	ML601 636	019 ML6019 ZZ 636 ZZ	-	- -	636 2RS	7 8	18 20	0.3 0.3	9.0 13	ML7011
7	11 13 14	2.5 3 3.5	3 4 5	0.1 0.15 0.15	0.08 0.15 0.15	0.43 0.54 1.15	0.23 0.28 0.51	16.1 14.9 14.2	49 000 47 000 45 000	- -	- -	59 000 55 000 54 000	ML701 ML701 687		- - -			7.8 8.2 8.2	10.2 11.8 12.8	0.08 0.15 0.15	0.7 1.4 2.0	(60)
	17 19 22	5 6 7	5 6 7	0.3 0.3 0.3	0.3 0.3 0.3	1.60 2.35 3.30	0.71 0.89 1.35	14.0 12.3 12.4	42 000 40 000 31 000	 36 000 28 000	28 000 27 000 23 000	50 000 47 000 37 000	697 607 627	697 ZZ 607 ZZ 627 ZZ	607 2RU 627 2RU	607 2RD 627 2RD	697 2RS 607 2RS 627 2RS	9 9 9	15 17 20	0.3 0.3 0.3	5.3 7.6 13	ML7022
	22 26	8 9	8 9	0.3 0.3	0.3 0.3	3.30 4.55	1.35 1.95	12.4 12.3	34 000 26 000	-	-	41 000 32 000	ML702 637	022 ML7022 ZZ 637 ZZ		- -		9 9	20 24	0.3 0.3	14 24	ML8014
8	12 14 16	2.5 3.5 4	3.5 4 5	0.1 0.15 0.2	0.08 0.15 0.2	0.54 0.81 1.25	0.27 0.39 0.59	16.4 15.3 14.0	47 000 44 000 42 000	_ _ 38 000	_ 28 000	55 000 52 000 50 000	ML801 ML801 688		_ W688 2RU	 W688 2RD	_ W688 2RS	8.8 9.2 9.6	11.2 12.8 14.4	0.08 0.15 0.2	0.8 1.8 3.2	698
	19 22 24	6 7 8	6 7 8	0.3 0.3 0.3	0.3 0.3 0.3	2.25 3.30 3.35	0.91 1.35 1.40	12.9 12.4 12.8	39 000 34 000 28 000	35 000 31 000 _	27 000 23 000 22 000	46 000 41 000 35 000	698 608 628	698 ZZ 608 ZZ 628 ZZ	608 2RU 628 2RU	698 2RD 608 2RD –	698 2RS 608 2RS 628 2RS	10 10 10	17 20 22	0.3 0.3 0.3	7.2 12 18	
	28	9	9	0.3	0.3	4.55	1.95	12.3	26 000	23 000	-	32 000	638	638 ZZ	-	638 2RD	-	10	26	0.3	29	009
9	17 20 24	4 6 7	5 6 7	0.2 0.3 0.3	0.2 0.3 0.3	1.35 2.45 3.35	0.66 1.05 1.40	14.9 13.3 12.8	39 000 35 000 33 000	35 000 32 000 30 000	 25 000 22 000	46 000 42 000 40 000	689 699 609	W689 ZZ 699 ZZ 609 ZZ	W689 2RU - 609 2RU	W689 2RD 699 2RD 609 2RD	699 2RS 609 2RS	10.6 11 11	15.4 18 22	0.2 0.3 0.3	3.5 7.5 15	(\mathcal{H})
	26 30	8 10	8 10	(0.6) 0.6	(0.6) 0.6	4.55 4.65	1.95 2.10	12.4 12.3	27 000 24 000	24 000	19 000	33 000 29 000	629 639	629 ZZ 639 ZZ	629 2RU	629 2RD	629 2RS	12.1 13	22 26	0.3 0.6	20 35	609

[Note] 1) Numerical values in () do not conform to JIS B 1521

Miniature and Extra-Small Ball Bearings


Dynamic equivalent radial load $P_r = XF_r + YF_a$


	•				
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$	> e
C_{0r}		X	Y	X	Y
0.172 0.345	0.19 0.22				2.30 1.99
0.689	0.26				1.71
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00

[Note] 1) Factor f_0 is shown in the bearing dimension table. 2) *i* means the number of rows of rolling elements in a bearing.

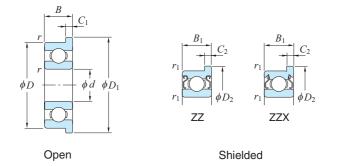
Static equivalent radial load

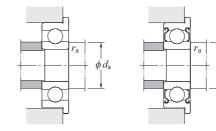
d 2~6 mm

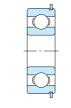
В	oundary (n	dimensi nm)	ons	1	Basic load ratings (kN)		•		•		•		•		Limiting spe	eeds (min ⁻¹)	Bearing No.	Moun	ting dimer (mm)	nsions	(Refer.) Mass	Full-size Drawing
d	D	B_1	r ¹⁾ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	Grease lub.	Oil lub.	Shielded	<i>d</i> _a (min.)	D _a (max.)	r _a (max.)	(g)	Full-Size Drawing								
2	5	1.6	0.08	0.19	0.06	13.3	98 000	110 000	ML2005/1B Z	2.6	4.2	0.07	0.1									
3	7 8	2 2.6	(0.15) 0.15	0.34 0.55	0.13 0.17	14.1 11.5	66 000 64 000	79 000 76 000	683 Z 693/1B Z	4.2 4.2	5.8 6.8	0.1 0.15	0.3 0.5	ML2005/1BZ								
4	8 9 10	2 2.6 3	0.08 (0.15) 0.15	0.31 0.64 0.96	0.11 0.23 0.35	14.6 12.8 12.4	61 000 59 000 54 000	73 000 70 000 65 000	ML4008 Z 684/1B Z 694/1B Z	4.8 5.2 5.2	7.2 7.8 9.8	0.08 0.1 0.15	0.4 0.6 1.8	684/1BZ								
5	11 13	4 3	0.15 0.2	0.71 1.10	0.28 0.43	14.0 12.3	53 000 50 000	63 000 60 000	685/1B Z 695/1B Z	6.2 6.6	9.8 11.4	0.15 0.2	1.0 2.2	695/1BZ								
6	13 15	3 3.5	0.15 0.2	1.10 1.50	0.44 0.60	13.7 13.4	48 000 45 000	57 000 54 000	686/1B Z 696/1B Z	7.2 7.6	11.8 13.4	0.15 0.2	1.8 2.8	686/1BZ								

[Note] 1) Numerical values in () do not conform to JIS B 1521

- Miniature and Extra-Small Ball Bearings


Dynamic equivalent radial load $P_r = XF_r + YF_a$


•	-				
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$	> e
C_{0r}		X	Y	X	Y
0.172	0.19				2.30
0.345	0.22				1.99
0.689	0.26				1.71
1.03	0.28				1.55
1.38	0.30	1	0	0.56	1.45
2.07	0.34				1.31
3.45	0.38				1.15
5.17	0.42				1.04
6.89	0.44				1.00


[Note] 1) Factor f_0 is shown in the bearing dimension table. 2) *i* means the number of rows of rolling elements in a bearing.

Static equivalent radial load

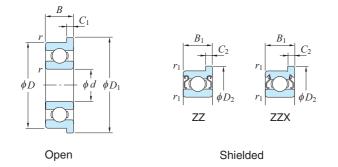
d 1~4 mm

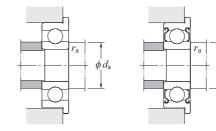
Bearings with locating snap ring on outer ring are also available. Consult JTEKT.

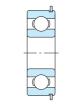
	B	oundary (m	dimensio nm)	ons			ad ratings N)	Factor	Limiting spe Grease lub.	eeds (min ⁻¹) Oil lub.	Bear	ing No.	FI	ange dii (m		าร	Mounting o (m		(Refer.) Mass	Full-size Drawing
d	D	В	B_1	<i>r</i> ¹⁾ (min.)	$r_1^{(1)}$ (min.)	$C_{ m r}$	$C_{0\mathrm{r}}$	f_0	$\begin{pmatrix} Open \\ ZZ, ZZX \end{pmatrix}$	$\begin{pmatrix} Open \\ Z, ZX \end{pmatrix}$	Open	Shielded	D_1	D_2	C_1	C_2	<i>d</i> _a (min.)	r _a (max.)	(g)	Tun-Size Drawing
1	3 4	1 1.6	-	0.07 0.1	_	0.10 0.14	0.03 0.04	11.6 11.4	130 000 120 000	150 000 140 000	F681 F691	- -	3.8 5	-	0.3 0.5	-	1.6 1.8	0.05 0.1	0.03 0.1	© F681
1.5	4 5 6	1.2 2 2.5	2 2.6 3	0.1 0.15 0.1	0.1 0.15 0.1	0.11 0.24 0.33	0.03 0.07 0.10	13.2 12.9 11.4	120 000 110 000 86 000	140 000 120 000 100 000	F68/1.5 F69/1.5 MLF1506	WF68/1.5 ZZ WF69/1.5 ZZ WMLF1506 ZZ	5 6.5 7.5	5 6.5 7.5	0.4 0.6 0.6	0.6 0.8 0.8	2.3 2.7 2.3	0.1 0.15 0.1	0.1 0.2 0.4	F691
2	5 5 6	1.5 2 2.3	2.3 2.5 3	0.1 0.1 0.15	0.1 0.08 0.1	0.17 0.17 0.33	0.05 0.05 0.10	13.3 12.9 11.4	99 000 99 000 86 000	120 000 120 000 100 000	F682 MLF2005 F692	WF682 ZZ WMLF2005 ZZ WF692 ZZ	6.1 6.2 7.5	6.1 6.2 7.5	0.5 0.6 0.6	0.6 0.6 0.8	2.8 2.8 3.2	0.1 0.07 0.1	0.1 0.2 0.3	MLF1506
	6 7 7	2.5 2.5 2.8	3 3 3.5	0.1 0.15 0.15	0.1 0.15 0.15	0.33 0.39 0.39	0.10 0.13 0.13	11.4 12.6 12.6	86 000 67 000 67 000	100 000 79 000 79 000	MLF2006 MLF2007 F602	WMLF2006 ZZ WMLF2007 ZZ WF602 ZZ	7.2 8.2 8.5	7.2 8.2 8.5	0.6 0.6 0.7	0.6 0.6 0.9	2.8 3.2 3.2	0.1 0.15 0.15	0.4 0.5 0.6	F682 600 F692
2.5	6 7 8	1.8 2.5 2.5	2.6 3.5 _	0.1 0.15 0.1	0.1 0.15 -	0.21 0.39 0.56	0.07 0.13 0.18	14.3 12.7 11.7	69 000 66 000 63 000	82 000 79 000 75 000	F68/2.5 F69/2.5 MLF2508/1B	WF68/2.5 ZZ WF69/2.5 ZZX –	7.1 8.5 9.2	7.1 8.5 -	0.5 0.7 0.6	0.8 0.9 _	3.3 3.7 3.5	0.1 0.15 0.1	0.2 0.5 0.7	MLF2006 F68/2.5
3	8 6 7	2.8 2 2	4 2.5 3	0.15 0.08 (0.15)	0.1 0.05 (0.15)	0.56 0.21 0.31	0.18 0.07 0.11	11.5 14.3 14.0	63 000 69 000 65 000	75 000 82 000 78 000	MLF2508 MLF3006 F683	WMLF2508 ZZ WMLF3006 ZZ WF683 ZZ	9.5 7.2 8.1	9.5 7.2 8.1	0.7 0.6 0.5	0.9 0.6 0.8	3.7 3.6 4.2	0.1 0.05 0.1	0.7 0.2 0.4	MLF2508 F683
	8 8 9	2.5 3 3	4 5	0.1 0.15 0.15	- 0.15 0.15	0.40 0.56 0.57	0.14 0.18 0.19	13.4 11.9 12.4	61 000 63 000 60 000	72 000 75 000 72 000	MLF3008 F693 F603	WF693 ZZ WF603 ZZ	9.2 9.5 10.5	9.5 10.5	0.6 0.7 0.7	0.9 1	4.0 4.2 4.2	0.1 0.15 0.15	0.6 0.7 1.0	F603 F623
4	10 7 8 9	4 2 2 2.5	4 2.5 3 4	0.15 0.08 0.1 (0.15)	0.15 0.05 0.08 (0.15)	0.63 0.25 0.40 0.64	0.22 0.11 0.14 0.23	12.4 15.1 13.9 12.8	61 000 63 000 61 000 59 000	72 000 75 000 72 000 70 000	F623 MLF4007 MLF4008 F684	F623 ZZ WMLF4007 ZZX WMLF4008 ZZ WF684 ZZ	11.5 8.2 9.2 10.3	11.5 8.2 9.2 10.3	0.6 0.6 0.6	0.6 0.6 1	4.2 4.6 4.8 5.2	0.15 0.05 0.08 0.1	1.8 0.3 0.5 0.7	MLF4008
	10 11 12	3 4 4	4 4 4	0.15 0.15 0.2	0.1 0.15 0.2	0.71 0.96 0.96	0.27 0.35 0.35	13.5 12.4 12.4	56 000 54 000 54 000	66 000 65 000 65 000	MLF4010 F694 F604	WMLF4010 ZZ F694 ZZ F604 ZZ	11.2 12.5 13.5	11.6 12.5 13.5	0.6 1 1	0.8 1 1	5.2 5.2 5.6	0.1 0.15 0.2	1.1 2.0 2.3	MLF4010
	13 16	5 5	5 5	0.2 0.3	0.2 0.3	1.30 1.35	0.48 0.52	12.2 13.0	50 000 47 000	60 000 55 000	F624 F634	F624 ZZ F634 ZZ	15 18	15 18	1 1	1 1	5.6 6	0.2 0.3	3.3 5.7	F694 F624

[Note] 1) Numerical values in () do not conform to JIS B 1521

Miniature and Extra-Small Ball Bearings


Dynamic equivalent radial load $P_r = XF_r + YF_a$


	•				
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$	> e
C_{0r}		X	Y	X	Y
0.172 0.345 0.689	0.19 0.22 0.26				2.30 1.99 1.71
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00


[Note] 1) Factor f_0 is shown in the bearing dimension table. 2) *i* means the number of rows of rolling elements in a bearing.

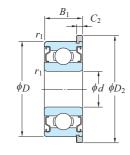
Static equivalent radial load

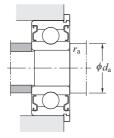
d 5~9 mm

Bearings with locating snap ring on outer ring are also available. Consult JTEKT.

	B	oundary (m	dimensic nm)	ons			ad ratings N)	Factor	Limiting sp Grease lub.	oeeds (min ⁻¹) Oil lub.	Bea	Bearing No. Flange dimensions (mm)		ns	Mounting d (mi		(Refer.) Mass	Full-size Drawing		
d	D	В	B_1	<i>r</i> (min.)	<i>r</i> ₁ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	$ \begin{bmatrix} Open \\ ZZ, ZZX \end{bmatrix} $	$\begin{pmatrix} Open \\ Z, ZX \end{pmatrix}$	Open	Shielded	D_1	D_2	C_1	C_2	d _a (min.)	r _a (max.)	(g)	Full-Size Drawing
5	8 9 10	2 2.5 3	2.5 3 4	0.08 0.1 0.1	0.05 0.08 0.1	0.22 0.43 0.43	0.09 0.17 0.17	15.8 14.6 14.8	59 000 57 000 57 000	70 000 67 000 67 000	MLF5008 MLF5009 MLF5010	WMLF5008 ZZX WMLF5009 ZZX WMLF5010 ZZ	9.2 10.2 11.2	9.2 10.2 11.6	0.6 0.6 0.6	0.6 0.6 0.8	5.6 5.8 5.8	0.05 0.08 0.1	0.4 0.6 1.0	
	11 13 14	3 4 5	5 4 5	0.15 0.2 0.2	0.15 0.2 0.2	0.71 1.10 1.35	0.28 0.43 0.51	14.0 13.4 12.3	53 000 49 000 48 000	63 000 59 000 57 000	F685 F695 F605	WF685 ZZ F695 ZZ F605 ZZ	12.5 15 16	12.5 15 16	0.8 1 1	1 1 1	6.2 6.6 6.6	0.15 0.2 0.2	1.1 2.5 3.9	F685
	16 19	5 6	5 6	0.3 0.3	0.3 0.3	1.75 2.35	0.67 0.89	12.4 12.3	45 000 40 000	54 000 47 000	F625 F635	F625 ZZ F635 ZZ	18 22	18 22	1 1.5	1 1.5	7 7	0.3 0.3	5.4 9.7	F625
6	10 12 13	2.5 3 3.5	3 4 5	0.1 0.15 0.15	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.2 14.5 13.7	53 000 49 000 48 000	63 000 59 000 57 000	MLF6010 MLF6012 F686	WMLF6010 ZZX WMLF6012 ZZ WF686 ZZ	11.2 13.2 15	11.2 13.6 15	0.6 0.6 1	0.6 0.8 1.1	6.8 7.2 7.2	0.08 0.1 0.15	0.7 1.4 2.1	MLF6010
	15 17 19	5 6 6	5 6 6	0.2 0.3 0.3	0.2 0.3 0.3	1.35 2.25 2.35	0.52 0.84 0.89	13.0 11.4 12.3	47 000 43 000 40 000	55 000 52 000 47 000	F696 F606 F626	F696 ZZ F606 ZZ F626 ZZ	17 19 22	17 19 22	1.2 1.2 1.5	1.2 1.2 1.5	7.6 8 8	0.2 0.3 0.3	4.3 6.3 9.2	F696
7	22 11 13 14	7 2.5 3 3.5	7 3 4 5	0.3 0.1 0.15 0.15	0.3 0.08 0.15 0.15	3.30 0.46 0.54 1.15	1.35 0.20 0.28 0.51	12.4 15.6 16.0 14.2	34 000 49 000 46 000 45 000	41 000 59 000 55 000 54 000	F636 MLF7011 MLF7013 F687	F636 ZZ WMLF7011 ZZX WMLF7013 ZZ WF687 ZZ	25 12.2 14.2 16	25 12.2 14.6 16	1.5 0.6 0.6 1	1.5 0.6 0.8 1.1	8 7.8 8.2 8.2	0.3 0.08 0.15 0.15	14 0.8 1.5 2.4	F697
	17 19 22	5 6 7	5 6 7	0.3 0.3 0.3	0.3 0.3 0.3	1.60 2.35 3.30	0.71 0.89 1.35	14.0 12.1 12.4	42 000 40 000 34 000	50 000 47 000 41 000	F697 F607 F627	F697 ZZ F607 ZZ F627 ZZ	19 22 25	19 22 25	1.2 1.5 1.5	1.2 1.5 1.5	9 9 9	0.3 0.3 0.3	5.8 8.7 14	F688
8	12 14 16	2.5 3.5 4	3.5 4 5	0.1 0.15 0.2	0.08 0.15 0.2	0.54 0.87 1.25	0.27 0.42 0.59	15.9 15.3 14.8	47 000 44 000 42 000	55 000 52 000 50 000	MLF8012 MLF8014 F688	WMLF8012 ZZX WMLF8014 ZZ WF688 ZZ	13.2 15.6 18	13.6 15.6 18	0.6 0.8 1	0.8 0.8 1.1	8.8 9.2 9.6	0.08 0.15 0.2	0.9 2.0 3.6	F689
	19 22	6 7	6 7	0.3 0.3	0.3 0.3	2.25 3.30	0.91 1.35	12.9 12.4	39 000 34 000	46 000 41 000	F698 F608	F698 ZZ F608 ZZ	22 25	22 25	1.5 1.5	1.5 1.5	10 10	0.3 0.3	8.3 13	
9	17 20 24	4 6 7	5 6 7	0.2 0.3 0.3	0.2 0.3 0.3	1.35 2.45 3.35	0.66 1.05 1.45	15.1 13.3 12.8	39 000 37 000 32 000	46 000 44 000 38 000	F689 F699 F609	WF689 ZZ F699 ZZ F609 ZZ	19 23 27	19 23 27	1 1.5 1.5	1.1 1.5 1.5	10.6 11 11	0.2 0.3 0.3	3.9 8.7 16	F609

Miniature and Extra-Small Ball Bearings


Dynamic equivalent radial load $P_r = XF_r + YF_a$


	•				
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{\rm a}}{F_{\rm r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}}$	> e
C_{0r}		X	Y	X	Y
0.172 0.345 0.689	0.19 0.22 0.26				2.30 1.99 1.71
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00

[Note] 1) Factor f_0 is shown in the bearing dimension table. 2) *i* means the number of rows of rolling elements in a bearing.

Static equivalent radial load

d 3~8 mm

	Boundary (n	dimensior nm)	IS		ad ratings (N)	Factor	Limiting speeds (min ⁻¹)	Bearing No.	U U	mensions nm)	Mounting of (m	limensions m)	(Refer.) Mass	Full-size D
d	D	B_1	$r_1^{(1)}$ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	Grease lub.	Shielded	$D_2^{(2)}$	$C_2^{(3)}$	d _a (min.)	r _a (max.)	(g)	Full-Size D
3	7 8	3 4	(0.15) 0.15	0.39 0.55	0.13 0.17	13.7 11.5	66 000 64 000	WFN683 ZZ WFN693 ZZ	8.1 9.5	0.8 0.9	4.2 4.2	0.1 0.15	0.5 0.9	
4	8 9	3 4	0.08 (0.15)	0.40 0.64	0.14 0.23	14.6 12.8	61 000 59 000	WMLFN4008 ZZ WFN684 ZZ	9.2 10.3	0.6 1	4.8 5.2	0.08 0.1	0.6 1.0	WFN683
5	9 10	3 4	0.08 0.1	0.38 0.50	0.17 0.21	14.6 14.8	56 000 55 000	WMLFN5009 ZZ WMLFN5010 ZZ	10.2 11.6	0.6 0.8	5.8 5.8	0.08 0.1	0.7 1.2	WMLFN5009
6	10 12 13	3 4 5	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.7 14.5 13.7	53 000 49 000 48 000	WMLFN6010 ZZ WMLFN6012 ZZ WFN686 ZZ	11.2 13.6 15	0.6 0.8 1.1	6.8 7.2 7.2	0.08 0.1 0.15	0.8 1.7 2.6	w w
7	11 13	3 4	0.08 0.15	0.43 0.82	0.23 0.38	16.1 14.9	49 000 47 000	WMLFN7011 ZZ WMLFN7013 ZZ	12.2 14.6	0.6 0.8	7.8 8.2	0.08 0.15	0.9 2.1	WMLFN7011
8	12 14 16	3.5 4 5	0.08 0.15 0.2	0.57 0.87 1.60	0.30 0.42 0.71	16.4 15.3 14.0	47 000 44 000 42 000	WMLFN8012 ZZ WMLFN8014 ZZ WFN688 ZZ	13.6 15.6 18	0.8 0.8 1.1	8.8 9.2 9.6	0.08 0.15 0.2	1.1 2.1 3.9	wi

[Note] 1) Numerical values in () do not conform to JIS B 1521

2) The tolerance for D_2 is from +0.125/-0.050 mm. This does not apply to the portion formed by the molding gate.

3) The tolerance for C_2 is from 0/–0.050 mm.

Remark: 1. Consult JTEKT for flange dimensions and shapes which are not listed above.

Miniature and Extra-Small Ball Bearings

Dynamic equivalent radial load $P_{r} = XF_{r} + YF_{a}$

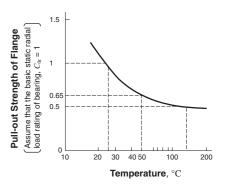
, , , , , , , , , , , , , , , , , , , ,							
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{a}}{F_{r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
C_{0r}		X	Y	X	Y		
0.172 0.345	0.19 0.22				2.30 1.99		
0.689	0.26				1.71		
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31		
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00		

[Note] 1) Factor f_0 is shown in the bearing dimension table.

2) *i* means the number of rows of rolling elements in a bearing. Static equivalent radial load

 $P_{0r} = 0.6F_r + 0.5F_a$ (when the value of $P_{0r} < F_r$, $P_{0r} = F_r$)

Performance

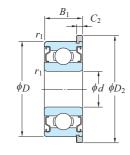


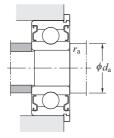
1. Application Conditions and Environment

Condition/Envi	Operating range			
Resistance to <50 °C		\leq 65% or less of C_{0r}		
axial load	\leq 50% or less of C_{0r}			
Heat resistance		max. 130 °C		
Low temperature	min. –30 °C			
Moisture resistance	≦95% RH			

Remark: Cor denotes the basic static load rating of bearing

2. Pull-out Strength of Flange


[Note] These values for the pull-out strength of flange are valid when an axial load is applied evenly to the whole circumference of the flange. If the load is applied locally, the C_{0r} value may decrease by approximately 10% (C_{0r} denotes the basic static radial load rating of bearing).



d 3~8 mm

	Boundary (n	dimensior nm)	IS		ad ratings	Factor	Limiting speeds (min ⁻¹)	Bearing No.	U U	mensions nm)	Mounting of (m	limensions m)	(Refer.) Mass	Full-size D
d	D	B_1	$r_1^{(1)}$ (min.)	Cr	$C_{0\mathrm{r}}$	f_0	Grease lub.	Shielded	$D_2^{(2)}$	$C_2^{(3)}$	d _a (min.)	r _a (max.)	(g)	Full-Size D
3	7 8	3 4	(0.15) 0.15	0.39 0.55	0.13 0.17	13.7 11.5	66 000 64 000	WFN683 ZZ WFN693 ZZ	8.1 9.5	0.8 0.9	4.2 4.2	0.1 0.15	0.5 0.9	
4	8 9	3 4	0.08 (0.15)	0.40 0.64	0.14 0.23	14.6 12.8	61 000 59 000	WMLFN4008 ZZ WFN684 ZZ	9.2 10.3	0.6 1	4.8 5.2	0.08 0.1	0.6 1.0	WFN683
5	9 10	3 4	0.08 0.1	0.38 0.50	0.17 0.21	14.6 14.8	56 000 55 000	WMLFN5009 ZZ WMLFN5010 ZZ	10.2 11.6	0.6 0.8	5.8 5.8	0.08 0.1	0.7 1.2	WMLFN5009
6	10 12 13	3 4 5	0.08 0.1 0.15	0.50 0.71 1.10	0.22 0.29 0.44	15.7 14.5 13.7	53 000 49 000 48 000	WMLFN6010 ZZ WMLFN6012 ZZ WFN686 ZZ	11.2 13.6 15	0.6 0.8 1.1	6.8 7.2 7.2	0.08 0.1 0.15	0.8 1.7 2.6	w w
7	11 13	3 4	0.08 0.15	0.43 0.82	0.23 0.38	16.1 14.9	49 000 47 000	WMLFN7011 ZZ WMLFN7013 ZZ	12.2 14.6	0.6 0.8	7.8 8.2	0.08 0.15	0.9 2.1	WMLFN7011
8	12 14 16	3.5 4 5	0.08 0.15 0.2	0.57 0.87 1.60	0.30 0.42 0.71	16.4 15.3 14.0	47 000 44 000 42 000	WMLFN8012 ZZ WMLFN8014 ZZ WFN688 ZZ	13.6 15.6 18	0.8 0.8 1.1	8.8 9.2 9.6	0.08 0.15 0.2	1.1 2.1 3.9	wi

[Note] 1) Numerical values in () do not conform to JIS B 1521

2) The tolerance for D_2 is from +0.125/-0.050 mm. This does not apply to the portion formed by the molding gate.

3) The tolerance for C_2 is from 0/–0.050 mm.

Remark: 1. Consult JTEKT for flange dimensions and shapes which are not listed above.

Miniature and Extra-Small Ball Bearings

Dynamic equivalent radial load $P_{r} = XF_{r} + YF_{a}$

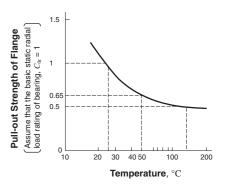
, , , , , , , , , , , , , , , , , , , ,							
$\frac{if_0F_a}{C_{0r}}$	е	$\frac{F_{a}}{F_{r}}$	$\leq e$	$\frac{F_{\rm a}}{F_{\rm r}} > e$			
C_{0r}		X	Y	X	Y		
0.172 0.345	0.19 0.22				2.30 1.99		
0.689	0.26				1.71		
1.03 1.38 2.07	0.28 0.30 0.34	1	0	0.56	1.55 1.45 1.31		
3.45 5.17 6.89	0.38 0.42 0.44				1.15 1.04 1.00		

[Note] 1) Factor f_0 is shown in the bearing dimension table.

2) *i* means the number of rows of rolling elements in a bearing. Static equivalent radial load

 $P_{0r} = 0.6F_r + 0.5F_a$ (when the value of $P_{0r} < F_r$, $P_{0r} = F_r$)

Performance



1. Application Conditions and Environment

Condition/Envi	Operating range			
Resistance to <50 °C		\leq 65% or less of C_{0r}		
axial load	\leq 50% or less of C_{0r}			
Heat resistance		max. 130 °C		
Low temperature	min. –30 °C			
Moisture resistance	≦95% RH			

Remark: Cor denotes the basic static load rating of bearing

2. Pull-out Strength of Flange

[Note] These values for the pull-out strength of flange are valid when an axial load is applied evenly to the whole circumference of the flange. If the load is applied locally, the C_{0r} value may decrease by approximately 10% (C_{0r} denotes the basic static radial load rating of bearing).

Supplementary Tables		
1. Bearing	Number Correspondence Table	50
2. Shaft To	olerances	54
3. Housing	g Bore Tolerances	56
4. Numerio	cal Values for Standard Tolerance Grades IT	
5. Prefixes	s used with SI Units	
6. SI Units	and Conversion Factors	59
7. Steel Ha	ardness Conversion	63
8. Viscosi	ty Conversion	64

Supplementary Table 1 (1) Bearing Number Correspondence Table Metric Series-Open Type

Bore				Bore	Bore	Bore
diameter (mm)	коүо	NSK	NMB	diamete (mm)	diameter KOYO	diameter KOYO NSK
1	681 ML1003 691	681 MR31 691	L-310 L-310W51 R-410	6	6 ML6010 ML6012 686	ML6012 MR126
1.2 1.5	ML1204	MR41 X	R-412 L-415		696 606 626	606 606
	69/1.5 ML1506	691 X 601 X	R-515 R-615		636	636 636
2	682 ML2005 692	682 MR52 692	L-520 L-520W02 R-620	7	7 ML7011 ML7013 687	ML7013 MR137
	ML2006 ML2007 602	MR62 MR72 602	R-620W52 R-720Y52 R-720		697 607 627	607 607
2.5	68/2.5 69/2.5	682 X 692 X	L-625 R-725	8	637 8 ML8012	
	ML2508/1B ML2508	MR82 X 602 X	R-825Y52 R-825	ö	8 ML8012 ML8014 688	ML8014 MR148
3	ML3006 683 ML3008	MR63 683 MR83	L-630 L-730 R-830Y52		698 608 628	608 608
	693 603	693 603	R-830 R-930		638	
	623 633	623 633	R-1030 _	9	9 689 699 609	699 699
4	ML4007 ML4008 684	MR74 MR84 684	L-740 L-840 L-940		629 639	
	ML4010 694 604	MR104 694 604	L-1040 R-1140 R-1240			
	624 634	624 634	R-1340 R-1640			
5	ML5008 ML5009 ML5010	MR85 MR95 MR105	L-850 L-950 L-1050			
	685 695 605	685 695 605	L-1150 R-1350 R-1450			
	625 635	625 635	R-1650 R-1950			

Supplementary Table 1 (2) Bearing Number Correspondence Table Metric Series-Shielded Type

Bere							
Bore diameter (mm)	коуо	NSK	NMB	Bore diameter (mm)	КОҮО	NSK	NMB
1.5	W69/1.5 ZZX	691 XZZ	R-515 ZZ	7	WML7011 ZZX	MR117 ZZS	L-1170 ZZ
	WML1506 ZZX	601 XZZS	R-615 ZZ		WML7013 ZZ	MR137 ZZS	L-1370 ZZ
					W687 ZZ	687 ZZ	L-1470 ZZ
2	W682 ZZX	682 ZZ	L-520 ZZ				
	WML2005 ZZ	MR52 ZZ	L-520 ZZW52		697 ZZ	697 ZZ	-
	W692 ZZ	692 ZZ	R-620 ZZ		607 ZZ	607 ZZ	R-1970 ZZ
		MD00 770			627 ZZ	627 ZZ	R-2270 ZZ
	WML2006 ZZX	MR62 ZZS	R-620ZZY52		CO7 77	CO7 77	
	WML2007 ZZX	MR72 ZZS	R-720ZZY03		637 ZZ	637 ZZ	-
	W602 ZZX	602 ZZS	R-720 ZZ	8	WML8012 ZZ	MR128 ZZS	L-1280 ZZ
2.5	W68/2.5 ZZ	682 XZZS	L-625 ZZ	U U	WML8014 ZZ	MR148 ZZ	L-1480 ZZ
	W69/2.5 ZZ	692 XZZ	R-725 ZZ		W688 ZZ	688 ZZ	L-1680 ZZ
	WML2508 ZZX	602 XZZS	R-825 ZZ				
		002 //220			698 ZZ	698 ZZ	R-1980 ZZ
3	WML3006 ZZ	MR63 ZZ	L-630 ZZ		608 ZZ	608 ZZ	R-2280 ZZ
	W683 ZZ	683 ZZ	L-730 ZZ		628 ZZ	628 ZZ	_
	W693 ZZ	693 ZZ	R-830 ZZ				
					638 ZZ	638 ZZ	_
	623 ZZ	623 ZZ	R-1030 ZZ		M600 77	690 77	1 1700 77
	633 ZZ	633 ZZ	-	9	W689 ZZ	689 ZZ	L-1790 ZZ
4	M/M 4007 77	1074 770	1 7401/0 77		699 ZZ	699 ZZ	L-2090 ZZ
4	WML4007 ZZ	MR74 ZZS	L-740X2 ZZ		609 ZZ	609 ZZ	_
	WML4008 ZZ	MR84 ZZ	L-840 ZZ		629 ZZ	629 ZZ	
	W684 ZZ	684 ZZ	L-940 ZZ		639 ZZ	639 ZZ	_
	WML4010 ZZ	MR104 ZZ	L-1040 ZZ		000 22	000 22	_
	694 ZZ	694 ZZ	R-1140 ZZ	Code of			
	604 ZZ	604 ZZ	R-1240 ZZ	single- shielded type	ZX or Z	ZS or Z	Z
	624 ZZ	624 ZZ	R-1340 ZZ	type			
	634 ZZ	634 ZZ	R-1640 ZZ				
5	WML5008 ZZ	MR85 ZZS	L-850 ZZ				
	WML5009 ZZ	MR95 ZZS	L-950X2 ZZ				
	WML5010 ZZ	MR105 ZZ	L-1050 ZZ				
	W685 ZZ	685 ZZ	L-1150 ZZ				
	695 ZZ	695 ZZ	R-1350 ZZ				
	605 ZZ	605 ZZ	R-1450 ZZ				
	625 ZZ	625 ZZ	R-1650 ZZ				
	635 ZZ	635 ZZ	R-1950 ZZ				
6	WML6010 ZZ	MR106 ZZS	L-1060 ZZ				
5	WML6010 ZZ	MR100 ZZ3 MR126 ZZ	L-1260 ZZ				
	W686 ZZ	686 ZZ	L-1360 ZZ				
	696 ZZ	696 ZZ	R-1560 ZZ				
	606 ZZ	606 ZZ	R-1760 ZZ				
	626 ZZ	626 ZZ	R-1960 ZZ				
	636 ZZ	636 ZZ	_				

Supplementary Table 1 (3) Bearing Number Correspondence Table Metric Series-Flanged Type

Bore diameter (mm)	коуо	NSK	NMB
1	F681	F681	LF-310
	F691	F691	RF-410
1.5	F68/1.5	F681X	LF-415
	F69/1.5	F691X	RF-515
	MLF1506	F601X	RF-615
2	F682	F682	LF-520
	MLF2005	MF52	
	F692	F692	RF-620
	MLF2006	MF62	RF-620W52
	MLF2007	MF72	RF-720Y52
	F602	F602	RF-720
2.5	F68/2.5	F682X	LF-625
	F69/2.5	F692X	RF-725
	MLF2508/1B	MF82X	RF-825Y52
	MLF2508	F602X	RF-825
3	MLF3006	MF63	LF-630
	F683	F683	LF-730
	MLF3008	MF83	RF-830Y52
	F693	F693	RF-830
	F603	F603	RF-930
	F623	F623	RF-1030
4	MLF4007	MF74	LF-740
	MLF4008	MF84	LF-840
	F684	F684	LF-940
	MLF4010	MF104	LF-1040
	F694	F694	RF-1140
	F604	F604	RF-1240
	F624	F624	RF-1340
	F634	F634	RF-1640
5	MLF5008	MF85	LF-850
	MLF5009	MF95	LF-950
	MLF5010	MF105	LF-1050
	F685	F685	LF-1150
	F695	F695	RF-1350
	F605	F605	RF-1450
	F625	F625	RF-1650
	F635	F635	RF-1950

Bore diameter (mm)	ΚΟΥΟ	NSK	NMB
6	MLF6010	MF106	LF-1060
	MLF6012	MF126	LF-1260
	F686	F686	LF-1360
	F696	F696	RF-1560
	F606	F606	RF-1760
	F626	F626	RF-1960
7	MLF7011	MF117	LF-1170
	MLF7013	MF137	LF-1370
	F687	F687	LF-1470
	F697	F697	_
	F607	F607	_
	F627	F627	RF-2270
8	MLF8012	MF128	LF-1280
	MLF8014	MF148	LF-1480
	F688	F688	LF-1680
	F698	F698	RF-1980
	F608	F608	RF-2280
9	F689	F689	LF-1790
	F699	F699	-

Supplementary Table 1 (4) Bearing Number Correspondence Table Metric Series-Flanged, and Shielded Type

	·····, ····	· (·) _ · · · · · · · · · · · · · · · · · ·	
Bore diameter (mm)	КОҮО	NSK	NMB
1.5	WF69/1.5 ZZ	F691 XZZ	RF-515 ZZ
	WMLF1506 ZZ		RF-615 ZZ
2	WF682 ZZ	F682 ZZ	LF-520 ZZ
	WMLF2005 ZZ	MF52 ZZS	-
	WF692 ZZ	F692 ZZ	RF-620 ZZ
	WMLF2007 ZZ	MF72 ZZ	RF-720Y03
	WF602 ZZ	F602 ZZS	RF-720 ZZ
2.5	WF68/2.5 ZZ	F682 XZZS	LF-625 ZZ
	WF69/2.5 ZZX	F692 XZZ	RF-725 ZZ
	WMLF2508 ZZ	F602 XZZS	RF-825 ZZ
3	WMLF3006 ZZ		LF-630 ZZ
	WF683 ZZ		LF-730 ZZ
	WF693 ZZ	F693 ZZ	RF-830 ZZ
	F623 ZZ	F623 ZZ	RF-1030 ZZ
4	WMLF4007 ZZX		LF-740 ZZ
	WMLF4008 ZZ	MF84 ZZ	LF-840 ZZ
	WF684 ZZ	F684 ZZ	LF-940 ZZ
	WMLF4010 ZZ	MF104 ZZ	LF-1040 ZZ
	F694 ZZ	F694 ZZ	RF-1140 ZZ
	F604 ZZ	F604 ZZ	RF-1240 ZZ
	F624 ZZ	F624 ZZ	RF-1340 ZZ
	F634 ZZ	F634 ZZ	RF-1640 ZZ
5	WMLF5008 ZZX	MF85 ZZS	LF-850 ZZ
	WMLF5009 ZZX	MF95 ZZS	LF-950 ZZ
	WMLF5010 ZZ	MF105 ZZ	LF-1050 ZZ
	WF685 ZZ	F685 ZZ	LF-1150 ZZ
	F695 ZZ	F695 ZZ	RF-1350 ZZ
	F605 ZZ	F605 ZZ	RF-1450 ZZ
	F625 ZZ	F625 ZZ	RF-1650 ZZ
	F635 ZZ	F635 ZZ	RF-1950 ZZ
6	WMLF6010 ZZX	MF106 ZZS	LF-1060 ZZ
	WMLF6012 ZZ	MF126 ZZ	LF-1260 ZZ
	WF686 ZZ	F686 ZZ	LF-1360 ZZ
	F696 ZZ	F696 ZZ	RF-1560 ZZ
	F606 ZZ	F606 ZZ	RF-1760 ZZ
	F626 ZZ	F626 ZZ	-

Bore diameter (mm)	КОҮО	NSK	NMB
7	WMLF7011 ZZX WMLF7013 ZZ WF687 ZZ		LF-1170 ZZ LF-1370 ZZ LF-1470 ZZ
	F697 ZZ F607 ZZ F627 ZZ	F697 ZZ F607 ZZ F627 ZZ	_ _ RF-2270 ZZ
8	WMLF8012 ZZX WMLF8014 ZZ WF688 ZZ	MF148 ZZ F688 ZZ	LF-1280 ZZ LF-1480 ZZ LF-1680 ZZ
	F698 ZZ F608 ZZ	F698 ZZ F608 ZZ	– RF-2280 ZZ
9	WF689 ZZ F699 ZZ	F689 ZZ F699 ZZ	LF-1790 ZZ -
Code of single- shielded type	ZX or Z	ZS or Z	Z

	Unit : μm (Re													(Refer.)																		
	n <mark>al sh</mark> (mm)	aft dia.						Dev	iation o	lasses	s of sha	ft diam	eter																	Nominal sh		⊿ _{dmp} * of bearing
ove	<u>, , ,</u>	up to	d 6	e 6	f 6	g 5	g 6	h 5	h 6	h 7	h 8	h 9	h 10	js 5	js 6	js 7	j 5	j 6	k	5 k6	k 7	m 5	m 6	m 7	n 5	n 6	p 6	r 6	r 7	over	/	(class 0)
	_	3	- 20 - 26	- 14 - 20		- 2 - 6	- 2 - 8	0 - 4	0 - 6	0 -10	0 - 14	0 - 25	0 - 40	± 2	± 3	± 5	± 2	+ 4 - 2	+ 4		+10	+ 6 + 2	+ 8 + 2	+ 12 + 2	+ 8 + 4	+ 10 + 4	+ 12 + 6	+ 16 + 10	+ 20 + 10	-	3	- 8
	3	6	- 30 - 38	- 20 - 28	- 10 - 18	- 4 - 9	- 4 -12	0 - 5	0 - 8	0 -12	0 - 18	0 - 30	0 - 48	± 2.5	± 4	± 6	+ 3 - 2	+ 6 - 2	+ + +		+13 + 1	+ 9 + 4	+12 + 4	+ 16 + 4	+13 + 8	+ 16 + 8	+ 20 + 12	+ 23 + 15	+ 27 + 15	3	6	0 - 8
	6	10	- 40 - 49	- 25 - 34	- 13 - 22	- 5 -11	- 5 -14	0 - 6	0 - 9	0 -15	0 - 22	0 - 36	0 - 58	± 3	± 4.5	± 7	+ 4 - 2	+ 7 - 2	+ + +		+16 + 1	+12 + 6	+15 + 6	+ 21 + 6	+16 +10	+ 19 + 10	+ 24 + 15	+ 28 + 19	+ 34 + 19	6	10	0 - 8
1	0	18	- 50 - 61	- 32 - 43	- 16 - 27	- 6 -14	- 6 -17	0 - 8	0 _11	0 –18	0 - 27	0 - 43	0 - 70	± 4	± 5.5	± 9	+ 5 - 3	+ 8 - 3	+ + + +		+19 + 1	+15 + 7	+18 + 7	+ 25 + 7	+20 +12	+ 23 + 12	+ 29 + 18	+ 34 + 23	+ 41 + 23	10	18	0 - 8
1	8	30	- 65 - 78	- 40 - 53	- 20 - 33	- 7 -16	- 7 -20	0 - 9	0 _13	0 21	0 - 33	0 - 52	0 - 84	± 4.5	± 6.5	±10	+ 5 - 4	+ 9 - 4	+1 +	1		+17 + 8	+21 + 8	+ 29 + 8	+24 +15	+ 28 + 15	+ 35 + 22	+ 41 + 28	+ 49 + 28	18	30	0 - 10
3	80	50	- 80 - 96	- 50 - 66	- 25 - 41	- 9 -20	- 9 -25	0 _11	0 -16	0 25	0 - 39	0 - 62	0 -100	± 5.5	± 8	±12	+ 6 - 5	+11 - 5	+1:			+20 + 9	+25 + 9	+ 34 + 9	+28 +17	+ 33 + 17	+ 42 + 26	+ 50 + 34	+ 59 + 34	30	50	0 - 12
_	-0		-100	- 60	- 30	_10	_10	0	0	0	0	0	0				+ 6	+12	+1	5 +21	+32	+24	+30	+ 41	+33	+ 39	+ 51	+ 60 + 41	+ 71 + 41	50	65	0
0	50	80	-119	- 79	- 49	-23	-29	-13	-19	-30	- 46	- 74	-120	± 0.5	± 9.5	±15	- 7	- 7	+ 2	2 + 2	+ 2	+11	+11	+ 11	+20	+ 20	+ 32	+ 62 + 43	+ 73 + 43	65	80	- 15
	0	120	_120	- 72	- 36	_12	_12	0	0	0	0	0	0			±17	+ 6	+13	+1	8 +25	+38	+28	+35	+ 48	+38	+ 45	+ 59	+ 73 + 51	+ 86 + 51	80	100	0
C	80	120	-142	- 94	- 58	-27	-34	-15	-22	-35	- 54	- 87	-140	± 7.5	1 I I	±17	- 9	- 9	+ 3	3 + 3	+ 3	+13	+13	+ 13	+23	+ 23	+ 37	+ 76 + 54	+ 89 + 54	100	120	- 20
																												+ 88 + 63	+103 + 63	120	140	
12	20	180	-145 -170	- 85 -110	- 43 - 68	-14 -32	-14 -39	0 -18	0 25	0 40	0 - 63	0 -100	0 -160	± 9	±12.5	±20	+ 7 -11	+14 -11	+2 + 3	1		+33 +15	+40 +15	+ 55 + 15	+45 +27	+ 52 + 27	+ 68 + 43	+ 90 + 65	+105 + 65	140	160	0 - 25
																												+ 93 + 68	+108 + 68	160	180	
																												+106 + 77	+123 + 77	180	200	
18	80	250	-170 -199	-100 -129	- 50 - 79	–15 –35	_15 _44	0 -20	0 29	0 46	0 - 72	0 -115	0 -185	±10	±14.5	±23	+ 7 -13	+16 -13	+24	1		+37 +17	+46 +17	+ 63 + 17	+51 +31	+ 60 + 31	+ 79 + 50	+109 + 80	+126 + 80	200	225	0 - 30
																												+113 + 84	+130 + 84	225	250	
25	50	315	-190		- 56		_17	0	0	0	0	0	0	+11 5	+16	±26	+ 7	±16	+2		+56	+43	+52	+ 72	+57	+ 66		+126 + 94		250	280	0
			-222	-142	- 88	_40	-49	-23	-32	-52	- 81	-130	-210	11.0		<u>+</u> 20	-16	10	+ -	4 + 4	+ 4	+20	+20	+ 20	+34	+ 34	+ 56	+130 + 98	+ 98	280	315	- 35
31	5	400	-210		- 62	-18	-18	0	0	0	0	0	0	±12.5	+18	±28	+ 7	±18	+2	9 +40	+61	+46	+57	+ 78	+62	+ 73		+144 +108	+108	315	355	0
			-246	-161	- 98	-43	-54	-25	-36	-57	- 89	-140	-230				-18	10	+ 4	4 + 4	+ 4	+21	+21	+ 21	+37	+ 37	+ 62	+150 +114	+114	355	400	- 40
40	00	500	-230				-20	0	0	0	0	0	0	±13.5	+20	±31	+ 7	±20	+32			+50	+63	+ 86	+67	+ 80	+108	+166 +126	+126	400	450	0
			-270	-175	-108	_47	-60	-27	-40	-63	- 97	-155	-250				-20		+ !	5 + 5	+ 5	+23	+23	+ 23	+40	+ 40	+ 68	+172 +132	+132	450	500	– 45
50	00	630	-260	-145		_	-22	_	0	0	0	0	0	_	±22	±35	_	_	_	+44	+70	_	+70	+ 96	_	+ 88	+122	+194 +150	+220 +150	500	560	0
			-304	-189	-120		-66		_44	-70	-110	-175	-280							0	0		+26	+ 26		+ 44	+ 78	+199 +155	+155	560	630	- 50
63	80	800	-290	-160		_	-24	_	0	0	0	0	0	_	±25	±40	_	_	_	+50	+80	_	+80	+110	_	+100	+138	+225 +175		630	710	0
			-340	-210	-130		-74		-50	-80	-125	-200	-320							0	0		+30	+ 30		+ 50	+ 88	+235 +185	+185	710	800	- 75
80)0	1 000	-320	-170	- 86	_	-26	_	0	0	0	0	0	_	±28	±45	_	_	_	+56		_	+90	+124	_	+112	+156	+266 +210		800	900	0
			-376	-226	-142		-82		-56	-90	-140	-230	-360							0	0		+34	+ 34		+ 56	+100	+276 +220	+310 +220	900	1 000	-100

[Note] 1) These shall be applied to bearings with a nominal bore diameter 0.6 mm and more

* Δ_{dmp} : single plane mean bore diameter deviation

Miniature and Extra-Small Ball Bearings Koyo

					St	pplem	entary	Table	3 Hous	sing Bo	ore Tole	rances																	ι	Jnit : μm	(Refer.)
Nomin	nal boi (mm)							Devia	tion cla	sses of	housin	g bore																	Nominal (m		<i>⊿</i> _{Dmp} * of bearing
over	<u>, , ,</u>	up to	E 6	F 6	F 7	G 6	G 7	H 6	H 7	H 8		H 10	J 6	J 7	JS 5	JS 6	JS 7	K 5		K 7	M 5	M 6	Μ7	N 5	N 6	N 7	P 6	P7 R7	over	up to	(class 0)
	_	3	+ 20 + 14	+ 12 + 6	+ 16 + 6	+ 8 + 2	+ 12 + 2	+ 6	+ 10	+ 14	+ 25 0	+ 40 0	+ 2 - 4	+ 4 - 6	± 2	± 3	± 5	0	-	0	- 2 - 6	- 2 - 8	- 2 - 8	- 4 - 8	- 4 - 10	- 4 - 14	- 6 - 12	- 6 - 10 - 16 - 20	_	3	0 ¹⁾ - 8
;	3	6	+ 28 + 20	+ 18 + 10	+ 22 + 10	+12 + 4	+ 16 + 4	+ 8 0	+ 12 0	+ 18 0	+ 30 0	+ 48 0	+ 5 - 3	± 6	± 2.5	± 4	± 6	0 - 5	+ 2 - 6	+ 3 - 9	- 3 - 8	- 1 - 9	0 - 12	- 7 -12	- 5 - 13	- 4 - 16	- 9 - 17	- 8 - 1 - 20 - 20	3	6	0 - 8
	6	10	+ 34 + 25	+ 22 + 13	+ 28 + 13	+14 + 5	+ 20 + 5	+ 9 0	+ 15 0	+ 22 0	+ 36 0	+ 58 0	+ 5 - 4	+ 8 - 7	± 3	± 4.5	± 7	+ 1 - 5	+ 2 - 7	+ 5 - 10	- 4 -10	- 3 - 12	0 - 15	- 8 -14	- 7 - 16	- 4 - 19	- 12 - 21	- 9 - 13 - 24 - 28	3	10	0 - 8
1(0	18	+ 43 + 32	+ 27 + 16	+ 34 + 16	+17 + 6	+ 24 + 6	+11 0	+ 18 0	+ 27	+ 43 0	+ 70 0	+ 6 - 5	+10 - 8	± 4	± 5.5	± 9	+ 2 - 6	1	+ 6 - 12	- 4 -12	- 4 - 15	0 - 18	- 9 -17	- 9 - 20	- 5 - 23	- 15 - 26	- 11 - 10 - 29 - 34		18	0
18	8	30	+ 53 + 40	+ 33 + 20	+ 41 + 20	+20 + 7	+ 28 + 7	+13 0	+ 21	+ 33	+ 52 0	+ 84 0	+ 8 - 5	+12 - 9	± 4.5	± 6.5	±10	+ 1	+ 2	+ 6	- 5 -14	- 4 - 17	0 - 21	-12 -21	- 11 - 24	- 7 - 28	- 18 - 31	- 14 - 20 - 35 - 4		30	0 - 9
3(0	50	+ 66 + 50	+ 41 + 25	+ 50 + 25	+25 + 9	+ 34 + 9	+16 0	+ 25 0	+ 39 0	+ 62 0	+100 0	+10 - 6	+14 -11	± 5.5	± 8	±12	+ 2 - 9	+ 3	+ 7 - 18	- 5 -16	- 4 - 20	0 - 25	-13 -24	- 12 - 28	- 8 - 33	- 21 - 37	- 17 - 29 - 42 - 50	30	50	0 - 11
-	•	00	+ 79	+ 49	+ 60	+29	+ 40	+19	+ 30	+ 46	+ 74	+120	+13	+18				+ 3	+ 4	+ 9	- 6	- 5	0	-15	- 14	- 9	- 26	- 21 - 60		65	0
50	0	80	+ 60	+ 30	+ 30	+10	+ 10	0	0	0	0	0	- 6	-12	± 6.5	± 9.5	±15	-10	-15	- 21	-19	- 24	- 30	-28	- 33	- 39	- 45	- 51 - 32 - 62	65	80	– 13
0	•	120	+ 94	+ 58	+ 71	+34	+ 47	+22	+ 35	+ 54	+ 87	+140	+16	+22	± 7.5		±17	+ 2	+ 4	+ 10	- 8	- 6	0	-18	- 16	- 10	- 30	- 38 - 24 - 73		100	0
8	U	120	+ 72	+ 36	+ 36	+12	+ 12	0	0	0	0	0	- 6	-13	± 7.5	±11	±17	-13	-18	- 25	-23	- 28	- 35	-33	- 38	- 45	- 52	- 59 - 4		120	- 15
																												- 48	120	140	(up to 150)
12	0	180	+110 + 85	+ 68 + 43	+ 83 + 43	+39 +14	+ 54 + 14	+25 0	+ 40 0	+ 63 0	+100 0	+160 0	+18 - 7	+26 -14	± 9	±12.5	±20	+ 3 -15		+ 12 - 28	- 9 -27	- 8 - 33	0 - 40	-21 -39	- 20 - 45	- 12 - 52	- 36 - 61	- 28 - 50 - 68 - 90		160	- 18 (over 150)
																												- 53 - 93		180	0 25
																												- 60 -100	180	200	
18	0	250	+129 +100	+ 79 + 50	+ 96 + 50	+44 +15	+ 61 + 15	+29 0	+ 46	+ 72 0	+115 0	+185 0	+22 - 7	+30 -16	±10	±14.5	±23	+ 2 -18		+ 13 - 33		- 8 - 37	0 - 46	-25 -45	- 22 - 51	- 14 - 60		- 33 - 63 - 79 <u>-10</u> 9	200	225	0 - 30
																												- 67 -113	225	250	
25	0	315	+142	+ 88	+108	+49	+ 69	+32	+ 52	+ 81	+130	+210	+25	+36	±11.5	+16	±26	+ 3		+ 16	-13	- 9	0	-27	- 25	- 14	- 47	- 36 -120	250	280	0
200	•	010	+110	+ 56	+ 56	+17	+ 17	0	0	0	0	0	- 7	-16	11.5	10	120	-20	-27	- 36	-36	- 41	- 52	-50	- 57	- 66	- 79	- 88 - 78 -130		315	- 35
31	5	400	+161	+ 98	+119	+54	+ 75	+36	+ 57	+ 89	+140	+230	+29	+39	±12.5	+18	±28	+ 3		+ 17	-14	- 10	0	-30	- 26	- 16		- 41 -144	315	355	0
	<u> </u>	400	+125	+ 62	+ 62	+18	+ 18	0	0	0	0	0	- 7	-18	12.0	-10	-20	-22	-29	- 40	-39	- 46	- 57	-55	- 62	- 73	- 87	- 98 - 93 -150) 355	400	- 40
40	0	500	+175	+108	+131	+60	+ 83	+40	+ 63	+ 97	+155	+250	+33	+43	±13.5	+20	±31	+ 2		+ 18	-16	- 10	0	-33	- 27	- 17			400	450	0
400		000	+135	+ 68	+ 68	+20	+ 20	0	0	0	0	0	- 7	-20	÷10.0	<u>-</u> 20		-25	-32	- 45	-43	- 50	- 63	-60	- 67	- 80	- 95	-108 -109 -172	430	500	- 45
50	0	630	+189	+120	+146	+66	+ 92	+44	+ 70	+110	+175	+280	_	_	_	±22	±35	_	0	0		- 26	- 26	_	- 44	- 44	- 78) 500	560	0
		000	+145	+ 76	+ 76	+22	+ 22	0	0	0	0	0	_	_		<u></u>			-44	- 70		- 70	- 96		- 88	-114	-122	-148 -158 -228	500	630	- 50
63	0	800	+210	+130	+160	+74	+104	+50	+ 80	+125	+200	+320	_	_	_	±25	±40	_	0	0		- 30	- 30	_	- 50	- 50	- 88		030	710	0
03	0	000	+160	+ 80	+ 80	+24	+ 24	0	0	0	0	0	_	_		120	4U	_	-50	- 80		- 80	-110		-100	-130	-138	-168 -18 -26	710	800	- 75
80	0 1	1 000	+226	+142		+82	+116	+56	+ 90	+140	+230	+360				100	+45		0	0		- 34	- 34		- 56	- 56		-210 -100 -300		900	0
00		1000		+ 86	+ 86	+26	+ 26	0	0	0	0	0	-	_	_	±28	±45	-	-56	- 90		- 90	-124		-112	-146	-156	_310	900	1 000	-100
1.00	0 4	1.050	+261	+164	+203	+94	+133	+66	+105	+165	+260	+420				100	150		0	0		- 40	- 40		- 66	- 66	-120	-250 -120 -355		1 120	0
1 00	0 1	1 250	+195	+ 98	+ 98	+28		0	0	0	0	0	_	_	_	±33	±52	-	-66	-105		-106	-145		-132				1 1 20	1 250	-125

[Note] 1) These shall be applied to bearings with a nominal outside diameter 2.5 mm and more

 $* \Delta_{Dmp}$: single plane mean outside diameter deviation

Miniature and Extra-Small Ball Bearings Koyo

Bas	sic size		Standard tolerance gra									rades	s (IT)							
(mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	1 4 ¹⁾	15 ¹⁾	16 ¹⁾	17 ¹⁾	18 ¹⁾	
Ove	r up to					Toler	ances	(µm)							Toler	ances	(mm)			
-	3	0.8	1.2	2	3	4	6	10	14	25	40	60	0.10	0.14	0.26	0.40	0.60	1.00	1.40	
	36	5 1	1.5	2.5	4	5	8	12	18	30	48	75	0.12	0.18	0.30	0.48	0.75	1.20	1.80	
	6 10	1	1.5	2.5	4	6	9	15	22	36	58	90	0.15	0.22	0.36	0.58	0.90	1.50	2.20	
1	0 18	1.2	2	3	5	8	11	18	27	43	70	110	0.18	0.27	0.43	0.70	1.10	1.80	2.70	
1	8 30	1.5	2.5	4	6	9	13	21	33	52	84	130	0.21	0.33	0.52	0.84	1.30	2.10	3.30	
3	0 50	1.5	2.5	4	7	11	16	25	39	62	100	160	0.25	0.39	0.62	1.00	1.60	2.50	3.90	
5	0 80	2	3	5	8	13	19	30	46	74	120	190	0.30	0.46	0.74	1.20	1.90	3.00	4.60	
8	0 120	2.5	4	6	10	15	22	35	54	87	140	220	0.35	0.54	0.87	1.40	2.20	3.50	5.40	
12	0 180	3.5	5	8	12	18	25	40	63	100	160	250	0.40	0.63	1.00	1.60	2.50	4.00	6.30	
18	0 250	4.5	7	10	14	20	29	46	72	115	185	290	0.46	0.72	1.15	1.85	2.90	4.60	7.20	
25	0 315	6	8	12	16	23	32	52	81	130	210	320	0.52	0.81	1.30	2.10	3.20	5.20	8.10	
31	5 400	7	9	13	18	25	36	57	89	140	230	360	0.57	0.89	1.40	2.30	3.60	5.70	8.90	
40	0 500	8	10	15	20	27	40	63	97	155	250	400	0.63	0.97	1.55	2.50	4.00	6.30	9.70	
50	0 630	-	-	-	-	-	44	70	110	175	280	440	0.70	1.10	1.75	2.80	4.40	7.00	11.00	
63	0 800) _	-	-	_	_	50	80	125	200	320	500	0.80	1.25	2.00	3.20	5.00	8.00	12.50	
80	0 1 000) _	-	-	-	-	56	90	140	230	360	560	0.90	1.40	2.30	3.60	5.60	9.00	14.00	
1 00	0 1 250) _	-	-	-	-	66	105	165	260	420	660	1.05	1.65	2.60	4.20	6.60	10.50	16.50	
1 25	0 1 600) _	-	-	-	-	78	125	195	310	500	780	1.25	1.95	3.10	5.00	7.80	12.50	19.50	
1 60	0 2 000) _	-	-	-	-	92	150	230	370	600	920	1.50	2.30	3.70	6.00	9.20	15.00	23.00	
2 00	0 2 500) _	-	-	-	-	110	175	280	440	700	1 100	1.75	2.80	4.40	7.00	11.00	17.50	28.00	
2 50	0 3 150) _	-	-	_	-	135	210	330	540	860	1 350	2.10	3.30	5.40	8.60	13.50	21.00	33.00	

Supplementary Table 4	Numerical Values for Standard Tolerance Grades IT
ouppionionally rubic 4	

[Note] 1) Standard tolerance grades IT 14 to IT 18 (incl.) shall not be used for basic sizes less than or equal to 1 mm.

Factor	Pre	efix	Factor	Pre	efix
Factor	Name	Symbol	Factor	Name	Symbol
10 ¹⁸	exa	Е	10 ⁻¹	deci	d
10 ¹⁵	peta	Р	10 ⁻²	centi	с
10 ¹²	tera	Т	10 ⁻³	milli	m
10 ⁹	giga	G	10 ⁻⁶	micro	μ
10 ⁶	mega	М	10 ⁻⁹	nano	n
10 ³	kilo	k	10 ⁻¹²	pico	р
10 ²	hecto	h	10 ⁻¹⁵	femto	f
10	deka	da	10 ⁻¹⁸	atto	а

Supplementary Table 5 Prefixes used with SI Units

Mass	SI units	Other Units ¹⁾	Conversion into SI units	Conversion from SI units
Angle	rad [radian(s)]	' [minute(s)] *	$1^{\circ} = \pi / 180 \text{ rad}$ $1' = \pi / 10 800 \text{ rad}$ $1'' = \pi / 648 000 \text{ rad}$	1 rad = 57.295 78°
Length	m [meter(s)]	 Å [Angstrom unit] μ [micron(s)] in [inch(es)] ft [foot(feet)] yd [yard(s)] mile [mile(s)] 	1 Å = 10^{-10} m = 0.1 nm = 100 pm 1 μ = 1 μ m 1 in = 25.4 mm 1 ft = 12 in = 0.304 8 m 1 yd = 3 ft = 0.914 4 m 1 mile = 5 280 ft = 1 609.344 m	1 m = 10 ¹⁰ Å 1 m = 39.37 in 1 m = 3.280 8 ft 1 m = 1.093 6 yd 1 km = 0.621 4 mile
Area	m ²	a [are(s)] ha [hectare(s)] acre [acre(s)]	1 a = 100 m ² 1 ha = 10 ⁴ m ² 1 acre = 4 840 yd ² = 4 046.86 m ²	$1 \text{ km}^2 = 247.1 \text{ acre}$
Volume	m ³	ℓ, L [liter(s)] * cc [cubic centimeters] gal (US) [gallon(s)] floz (US) [fluid ounce(s)] barrel (US) [barrels(US)]	1 ℓ = 1 dm ³ = 10 ⁻³ m ³ 1 cc = 1 cm ³ = 10 ⁻⁶ m ³ 1 gal (US) = 231 in ³ = 3.785 41 dm ³ 1 floz (US) = 29.573 5 cm ³ 1 barrel (US) = 158.987 dm ³	1 $m^3 = 10^3 l$ 1 $m^3 = 10^6 cc$ 1 $m^3 = 264.17 gal$ 1 $m^3 = 33 814 floz$ 1 $m^3 = 6.289 8 barrel$
Time	s [second(s)]	min [minute(s)] * h [hour(s)] * d [day(s)] *		
Angular velocity	rad/s			
Velocity	m/s	kn [knot(s)] m/h *	1 kn = 1 852 m/h	1 km/h = 0.539 96 kn
Acceleration	m/s ²	G	1 G = 9.806 65 m/s ²	1 m/s ² = 0.101 97 G
Frequency	Hz [hertz]	c/s [cycle(s)/second]	$1 \text{ c/s} = 1 \text{ s}^{-1} = 1 \text{ Hz}$	
Rotational frequency	s ⁻¹	rpm [revolutions per minute] min ⁻¹ * r/min	1 rpm = 1/60 s ⁻¹	1 s ⁻¹ = 60 rpm
Mass	kg [kilogram(s)]	t [ton(s)] * lb [pound(s)] gr [grain(s)] oz [ounce(s)] ton (UK) [ton(s) (UK)] ton (US) [ton(s) (US)] car [carat(s)]	1 t = 10^3 kg 1 lb = 0.453 592 37 kg 1 gr = 64.798 91 mg 1 oz = 1/16 lb = 28.349 5 g 1 ton (UK) = 1 016.05 kg 1 ton (US) = 907.185 kg 1 car = 200 mg	1 kg = 2.204 6 lb 1 g = 15.432 4 gr 1 kg = 35.274 0 oz 1 t = 0.984 2 ton (UK) 1 t = 1.102 3 ton (US) 1 g = 5 car

Supplementary Table 6 (1) SI units and conversion factors

Note 1) * : Unit can be used as an SI unit.

No asterisk : Unit cannot be used.

Mass	SI units	Other Units ¹⁾	Conversion into SI units	Conversion from SI units
Density	kg/m ³			
Linear density	kg/m			
Momentum	kg ⋅ m/s			
Moment of momentum Angular	$\left. kg \cdot m^2 / s \right.$			
momentum Moment of inertia	$kg \cdot m^2$			
Force	N [newton(s)]	dyn [dyne(s)] kgf [kilogram-force] gf [gram-force] tf [ton-force] lbf [pound-force]	1 dyn = 10^{-5} N 1 kgf = 9.806 65 N 1 gf = 9.806 65 × 10^{-3} N 1 tf = 9.806 65 × 10^{3} N 1 lbf = 4.448 22 N	1 N = 10 ⁵ dyn 1 N = 0.101 97 kgf 1 N = 0.224 809 lbf
Moment of force	N · m [newton meter(s)]	gf · cm kgf · cm kgf · m tf · m lbf · ft	$1 \text{ gf} \cdot \text{cm} = 9.806 \ 65 \times 10^{-5} \text{ N} \cdot \text{m}$ $1 \text{ kgf} \cdot \text{cm} = 9.806 \ 65 \times 10^{-2} \text{ N} \cdot \text{m}$ $1 \text{ kgf} \cdot \text{m} = 9.806 \ 65 \text{ N} \cdot \text{m}$ $1 \text{ tf} \cdot \text{m} = 9.806 \ 65 \times 10^{3} \text{ N} \cdot \text{m}$ $1 \text{ lbf} \cdot \text{ft} = 1.355 \ 82 \text{ N} \cdot \text{m}$	1 N · m = 0.101 97 kgf · m 1 N · m = 0.737 56 lbf · ft
Pressure Normal stress	Pa [pascal(s)] or N/m ² {1 Pa = 1 N/m ² }	gf/ cm ² kgf/mm ² kgf/m ² lbf/in ² bar [bar(s)] at [engineering air pressure] mH ₂ O, mAq [meter water column] atm [atmosphere] mHg [meter mercury column] Torr [torr]	1 gf/cm ² = 9.806 65 × 10 Pa 1 kgf/mm ² = 9.806 65 × 10 ⁶ Pa 1 kgf/m ² = 9.806 65 Pa 1 lbf/in ² = 6 894.76 Pa 1 bar = 10 ⁵ Pa 1 at = 1kgf/cm ² = 9.806 65 × 10 ⁴ Pa 1 mH ₂ O = 9.806 65 × 10 ³ Pa 1 atm = 101 325 Pa 1 mHg = $\frac{101 325}{0.76}$ Pa 1 Torr = 1mmHg = 133.322 Pa	1 MPa = 0.101 97 kgf/mm ² 1 Pa = 0.101 97 kgf/m ² 1 Pa = 0.145 × 10 ⁻³ lbf/in ² 1 Pa = 10^{-2} mbar 1 Pa = 7.500 6 × 10^{-3} Torr
Viscosity	Pa · s [pascal second]	P [poise] kgf · s/m ²	$10^{-2} P = 1 cP = 1 mPa \cdot s$ 1 kgf $\cdot s/m^2 = 9.806 65 Pa \cdot s$	1 Pa · s = 0.101 97 kgf · s/m ²
Kinematic viscosity	m ² /s	St [stokes]	10^{-2} St = 1 cSt = 1 mm ² /s	
Surface tension	N/m			

Supplementary Table 6 (2) SI units and conversion factors

Note 1) *: Unit can be used as an SI unit.

No asterisk : Unit cannot be used.

Mass	SI units	Other Units ¹⁾	Conversion into SI units	Conversion from SI units
				Conversion from Si units
Work	J		$1 \text{ eV} = (1.602 \ 189 \ 2 \pm 0.000 \ 004 \ 6) \times 10^{-19} \text{ J}$	4.1. 407
	[joule(s)]	erg [erg(s)]	$1 \text{ erg} = 10^{-7} \text{ J}$	$1 J = 10^7 \text{ erg}$
Frances	$\{1 J = 1 N \cdot m\}$	kgf · m	$1 \text{ kgf} \cdot \text{m} = 9.806 65 \text{ J}$	1 J = 0.101 97 kgf · m 1 J = 0.737 56 lbf · ft
Energy		lbf · ft	1 lbf · ft = 1.355 82 J	$J = 0.73750101 \cdot 11$
Power	W	erg/s [ergs per second]	$1 \text{ erg/s} = 10^{-7} \text{ W}$	
	[watt(s)]	kgf · m/s	$1 \text{ kgf} \cdot \text{m/s} = 9.806 65 \text{ W}$	1 W = 0.101 97 kgf · m/s
		PS [French horse-power]	$1 \text{ PS} = 75 \text{ kgf} \cdot \text{m/s} = 735.5 \text{ W}$	1 W = 0.001 36 PS
		HP [horse-power (British)]	$1 \text{ HP} = 550 \text{ lbf} \cdot \text{ft/s} = 745.7 \text{ W}$	1 W = 0.001 34 HP
		lbf · ft/s	$1 \text{ lbf} \cdot \text{ft/s} = 1.355 82 \text{ W}$	
Thermo-dynamic	К			
temperature	[kelvin(s)]			
Celsius	°C	°F [degree(s) Fahrenheit]	5	5
temperature	[celsius(s)]	- [$t^{\circ}F = \frac{5}{9}(t - 32)^{\circ}C$	$t^{\circ}C = (\frac{5}{9}t + 32)^{\circ}F$
	${t ^{\circ}C = (t + 273.15) K}$			
Linear expansion	K ⁻¹	°C ⁻¹ [per degree]		
coefficient	K			
Heat	J	erg [erg(s)]	$1 \text{ erg} = 10^{-7} \text{ J}$	$1 \text{ J} = 10^7 \text{ erg}$
	[joule(s)]	$kgf \cdot m$		
	$\{1 J = 1 N \cdot m\}$	cal _{IT} [I. T. calories]	$1 \text{ cal}_{\text{IT}} = 4.1868 \text{ J}$	$1 J = 0.238 85 cal_{IT}$
			$1 \text{ Mcalrr} = 1.163 \text{ kW} \cdot \text{h}$	$1 \text{ kW} \cdot h = 0.86 \times 10^6 \text{ cal}_{\text{IT}}$
Thermal	W/ (m ⋅ K)	W/ (m · °C)	$1 \text{ W/ } (\text{m} \cdot ^{\circ}\text{C}) = 1 \text{ W/ } (\text{m} \cdot \text{K})$	
conductivity		cal/ (s \cdot m \cdot °C)	$1 \text{ cal/ } (s \cdot m \cdot °C) = 4.186 \text{ 05 W/ } (m \cdot K)$	
Coefficient of	W/ ($m^2 \cdot K$)	W/ ($m^2 \cdot C$)	$1 \text{ W/ } (\text{m}^2 \cdot \text{°C}) = 1 \text{ W/ } (\text{m}^2 \cdot \text{K})$	
heat transfer		cal/ (s \cdot m ² \cdot °C)	1 cal/ (s \cdot m ² \cdot °C) = 4.186 05 W/ (m ² \cdot K)	
Heat capacity	J/K	J/°C	1 J/°C = 1 J/K	
near capacity	5/1X			
Massic heat	J/ (kg · K)	J/ (kg · °C)		
capacity	J/ (Kg · K)	J/ (Kg · C)		
ταράτης				

Supplementary Table 6 (3)	SI units and conversion factors

* : Unit can be used as an SI unit. Note 1) No asterisk : Unit cannot be used.

Mass	SI units	Other Units ¹⁾	I units and conversion factors Conversion into SI units	Conversion from SI units
Electric current	A			
	[ampere(s)]			
Electric charge	С	A · h *	$1 \text{ A} \cdot \text{h} = 3.6 \text{ kC}$	
	[coulomb(s)]			
Quantity of electricity	$\{1 C = 1 A \cdot s\}$			
electricity				
Tension	V			
	[volt(s)]			
Electric potential	{1 V = 1 W/A}			
Capacitance	F			
	[farad(s)]			
	{1 F = 1 C/V}			
Magnetic field	A/m	Oe [oersted(s)]	$1 \text{ Oe} = \frac{10^3}{4\pi} \text{ A/m}$	$1 \text{ A/m} = 4\pi \times 10^{-3} \text{ Oe}$
strength			4//	
Magnetic flux	Т	Gs [gauss(es)]	$1 \text{ Gs} = 10^{-4} \text{ T}$	$1 \text{ T} = 10^4 \text{ Gs}$
density	[tesla(s)]	γ [gamma(s)]	1 γ = 10 ⁻⁹ T	1 T = 10 ⁹ γ
	$ \left\{ \begin{array}{l} 1 \text{ T} = 1 \text{ N/(A} \cdot \text{m}) \\ = 1 \text{ Wb/m}^2 \end{array} \right\} $			
	$\left\{\begin{array}{c} = 1 \text{ Wb/m}^2\\ = 1 \text{ V} \cdot \text{s/m}^2 \end{array}\right\}$			
Magnetic flux	Wb	Mx [maxwell(s)]	$1 \text{ Mx} = 10^{-8} \text{ Wb}$	$1 \text{ Wb} = 10^8 \text{ Mx}$
magnetic nux	[weber(s)]			1 W 0 = 10 IVIX
	$\{1 \text{ Wb} = 1 \text{ V} \cdot \text{s}\}$			
Self inductance	Н			
	[henry (– ries)]			
	{1 H = 1 Wb/A}			
Resistance	Ω			
(to direct current)	[ohm(s)]			
	$\{1 \ \Omega = 1 \ V/A\}$			
Conductance	S			
(to direct current)	[siemens]			
	$\{1 S = 1 A/V\}$			
Active power	$W = 1 U_{0}$			
	$\begin{bmatrix} 1 W = 1 J/s \\ = 1 A \cdot V \end{bmatrix}$			
Note 1) *				

Supplementary Table 6 (4) SI units and conversion factors

Note 1) *: Unit can be used as an SI unit.

No asterisk : Unit cannot be used.

Rockwell		Bri	Brinell		Rockwell	
C-scale	Vicker's	Standard ball	Tungsten	A-scale	B-scale	Shore
1 471.0 N		Stanuaru bali	carbide ball	588.4 N	980.7 N	
68	940		-	85.6		97
67	900		-	85.0		95
66	865		_	84.5		92
65	832		739	83.9		91
64	800		722	83.4		88
63	772		705	82.8		87
62	746 720		688 670	82.3 81.8		85 83
61 60	697		654	81.2		81
59	674		634	80.7		80
58	653		615	80.1		78
57	633		595	79.6		76
56	613		577	79.0		75
55	595	_	560	78.5		74
54	577	_	543	78.0		72
53	560	_	525	77.4		71
52	544	500	512	76.8		69
51	528	487	496	76.3		68
50	513	475	481	75.9		67
49	498	464	469	75.2		66
48	484	451	455	74.7		64
47	471	442	443	74.1		63
46	458	432	432	73.6		62
45	446		21	73.1		60
44	434		09	72.5		58
43	423		00	72.0		57
42	412	39	90	71.5		56
41	402	38	31	70.9		55
40	392		371		_	54
39	382		62	69.9 69.4	-	52
38	372		353		-	51
37	363		344		_	50
36	354		336		(109.0)	49
35	345		327		(108.5)	48
34	336		319		(108.0)	47
33	327	311		66.8	(107.5)	46
32	318	301		66.3	(107.0)	44
31	310	294		65.8	(106.0)	43
30	302	286		65.3	(105.5)	42
29 28	294 286	279 271		64.7 64.3	(104.5) (104.0)	41 41
28 27	200	264		63.8	(104.0)	41
26	279		258		(103.0)	38
25	266	253		63.3 62.8	(102.3)	38
23	260		47	62.4	(101.0)	37
23	254	243		62.0	100.0	36
22	248		237		99.0	35
21	243		31	61.5 61.0	98.5	35
20	238		26	60.5	97.8	34
(18)	230	2	19	_	96.7	33
(16)	222	212		_	95.5	32
(14)	213	203		-	93.9	31
(12)	204		194		92.3	29
(10)	196	187			90.7	28
(8)	188	179			89.5	27
(6)	180		171		87.1	26
(4)	173		165		85.5	25
(2)	166		58		83.5	24
(0)	160	1	52		81.7	24

Supplementary Table 7 Steel Hardness Conversion

Supplementary Table 8 Viscosity Conversion

Kinematic viscosity	Saybolt SUS (second)		Redv R (see	Engler E (degree)	
mm ² /s	100 °F	210 °F	50 °C	100 °C	L (degree)
2	32.6	32.8	30.8	31.2	1.14
3	36.0	36.3	33.3	33.7	1.22
4	39.1	39.4	35.9	36.5	1.31
5	42.3	42.6	38.5	39.1	1.40
6	45.5	45.8	41.1	41.7	1.48
7	48.7	49.0	43.7	44.3	1.56
8	52.0	52.4	46.3	47.0	1.65
9	55.4	55.8	49.1	50.0	1.75
10	58.8	59.2	52.1	52.9	1.84
11	62.3	62.7	55.1	56.0	1.93
12	65.9	66.4	58.2	59.1	2.02
13	69.6	70.1	61.4	62.3	2.12
14	73.4	73.9	64.7	65.6	2.22
15	77.2	77.7	68.0	69.1	2.32
16	81.1	81.7	71.5	72.6	2.43
17	85.1	85.7	75.0	76.1	2.54
18	89.2	89.8	78.6	79.7	2.64
19	93.3	94.0	82.1	83.6	2.76
20	97.5	98.2	85.8	87.4	2.87
21	102	102	89.5	91.3	2.98
22	106	107	93.3	95.1	3.10
23	110	111	97.1	98.9	3.22
24	115	115	101	103	3.34
25	119	120	105	107	3.46
26	123	124	109	111	3.58
27	128	129	112	115	3.70
28	132	133	116	119	3.82
29	137	138	120	123	3.95
30	141	142	124	127	4.07
31	145	146	128	131	4.20
32	150	150	132	135	4.32
33	154	155	136	139	4.45
34	159	160	140	143	4.57

Supplementary Table 8 Viscosity Conversion

Kinematic	-	bolt	Redv	Englor	
viscosity	SUS (second)		R (second)		Engler E (degree)
mm²/s	100 °F	210 °F	50 °C	100 °C	
35	163	164	144	147	4.70
36	168	170	148	151	4.83
37	172	173	153	155	4.96
38	177	178	156	159	5.08
39	181	183	160	164	5.21
40	186	187	164	168	5.34
41	190	192	168	172	5.47
42	195	196	172	176	5.59
43	199	201	176	180	5.72
44	204	205	180	185	5.85
45	208	210	184	189	5.98
46	213	215	188	193	6.11
47	218	219	193	197	6.24
48	222	224	197	202	6.37
49	227	228	201	206	6.50
50	231	233	205	210	6.63
55	254	256	225	231	7.24
60	277	279	245	252	7.90
65	300	302	266	273	8.55
70	323	326	286	294	9.21
75	346	349	306	315	9.89
80	371	373	326	336	10.5
85	394	397	347	357	11.2
90	417	420	367	378	11.8
95	440	443	387	399	12.5
100	464	467	408	420	13.2
120	556	560	490	504	15.8
140	649	653	571	588	18.4
160	742	747	653	672	21.1
180	834	840	734	757	23.7
200	927	933	816	841	26.3
250	1 159	1 167	1 020	1 051	32.9
300	1 391	1 400	1 224	1 241	39.5

[Remark] 1 $\text{mm}^2/\text{s} = 1 \text{ cSt}$ (centi stokes)

Value & Technology

